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PREFACE

The rapid development of electronics, particularly the
achievements in functional electronics, microelectronics, and
nanoelectronics—an entirely new field of electronics—opens
up new prospects for the future development of fundamentals
and circuit design of electronic devices.

A large group of materials with electronic electrical con-
ductivity, whose specific resistance at normal temperature lies
between those of conductors and dielectrics, can be classified
as semiconductors. The electrical conduction of semiconduc-
tors is highly dependent on external energy influences, as well
as on extremely small amounts of various impurities present in
the semiconductor composition. The control of semiconduc-
tor electrical conductivity under the influence of temperature,
light, electric field, and mechanical forces forms the basis for
the operating principles of thermistors, photoresistors, non-
linear resistors (varistors), strain gauges, and similar devices.
The presence of two types of electrical conductivity in semi-
conductors—electron (n-type) and hole (p-type)—enables the
fabrication of semiconductor devices with p-n junctions. These
include various types of both high-power and low-power rec-
tifiers, amplifiers, and generators. Semiconductor systems can
be successfully employed to convert different forms of energy
into electrical current energy. Examples of semiconductor con-
verters include solar cells and thermoelectric generators. It is
also possible to achieve cooling of several tens of degrees with
the aid of semiconductors. In recent years, the recombination



luminescence of electron-hole junctions at low DC voltages
has acquired particular significance for the development of sig-
nal light sources and information display devices in computing
machines. Semiconductors can also serve as heating elements
(silicon carbide rods); they can be used to excite the cathode
spot in ignitron rectifiers, to measure magnetic field intensity
(Hall transducers), and can function as radioactive radiation in-
dicators, among other applications.

The Author



SECTION 1. CLASSIFICATION OF MATERIALS
BASED ON THE VALUE OF ELECTRICAL
CONDUCTIVITY AND ITS DEPENDENCE ON
TEMPERATURE

All substances that exist in nature differ sharply from each
other due to their physical properties. These distinctive
properties are characterized by certain physical quantities -
density, thermal conductivity, heat capacity, heat absorption, etc.
One of these -characteristic quantities is the electrical
conductivity of matter (special resistance). Each substance is
characterized by the value of its electrical conductivity & . The
following table shows the value of the electrical conductivity of
anumber of substances. As can be seen from the table, the special
electrical properties of metals such as gold, silver, and copper are
107 Cm-™', while for ebonite and amber this quantity is 10-14

Cm-™'. Substances with O & (1 0+ 106)21 conductivity of
Cm™!' are called conductors or metals, and those with
o= (1078 —10717) a composition of Sm'm 1 are called

insulators or dielectrics.

Substances whose electrical conductivity lies within the
range between that of metals and dielectrics are called
semiconductors. The electrical conductivity of the

semiconductors O ~ (l 08+ 106) corresponds to the

Sm m-1 interval.



Table 1

N | Substance o, N | Substan o,
0 Siemens/ | 0 ce Siemens / m
m
1 | Copper 630 - 107 7 | Diamon 107"
(electrolyti ’ d
c)

2 Silver 6,03 . 107 8 Mica 1’1 . 10—11
3 Copper 5 62 . 107 9 Pyrex 1 . 10—12

4 | Gold 4’13107 10 | Quartz 5.10—13

5 | Aluminum 3’12.107 11 | Ebonite 5.10—14

6 | Nichrome 9.1 05 12 | Paraffin 33.1 0—17

A typical comparison shows that the price of electrical
conductivity of semiconductors differs significantly from that of
metals and dielectrics. Such a designationdoes not provide much
information about the specific characteristics of semiconductors.
However, when comparing the temperature dependencies of the
conductivity (resistance) of metal and semiconductor substances,
it is observed that there is a sharp difference between the
temperature dependencies of their conductivity (resistance).

When the temperature increases, the electrical
resistance of the metals increases by law. For metals, this
dependence is expressed as follows:

R(t)=R,(1+ar) (1)
where RO is the resistance of the metal at a temperature of 0°C,

and Rt is the resistance of the metal at a certain temperature t. In
the above expression (1), the quantity a- is the thermal

10



coefficient of resistance, which is approximately equal to 1 for
pure metals ————. Resistance for metals depends on the type

of wire, its geometric size, and temperature. In the case of metals,
the temperature dependence of the special resistance is also
expressed as follows.

p=p,(l+ar) )
Here p, is a special resistance of the metal at 0° C, p,
respectively, and at a certain temperature t. The thermal

coefficient of resistance (special resistance) for metals is positive
and is determined accordingly as follows:

dR dp

o= or o =

Rydt p,dt

The temperature coefficient of resistance (special resistance) for

3)

metals is the relative change of resistance (special resistance)
when the temperature of the metal changes one degree in the
physical sense. In metals, electric charges are free electrons in an
atom that are in weak bond with the nucleus. Semiconductors do
not have free carriers.

In contrast to metals, the electrical resistance in
semiconductors decreases sharply with the increase in
temperature. An empirical relationship between the resistance
of semiconductors and absolute temperature at certain
temperature intervals is observed as follows: That is, with the
increase in temperature, the resistance of the semiconductor
decreases by exponential law. This dependence is expressed as

follows:
AE

R(T) = Rje*" 4)

where the RO quantity is resistance at a temperature of 00 C, &

11



is the Bolsman constant, T is the absolute nemerate, and AE the
quantity is the width of the forbidden zone of the semiconductor.
For the special conductivity of the semiconductor (taking

1, . o
o =—) into account that it is, then for the temperature
Yol

dependence of the conductivity of the semiconductor, we take:
AE

oc=0, 7 (5)
A semiconductor with AE a given characteristic quantity is

also called activation energy. For different semiconductors, this
quantity is different.

Activation energy is one of the core values that
characterize a semiconductor. To determine it, the activation
energy of the expression (5) is determined by electron volts from
the angle of inclination of the suspension without logarising it.

AE o AE
Inoc=lno,——: In—=-——:Ino~—
o, kT T
Figure 1 shows the tem-perature dependence of the resistance for
metals and semiconductors, and Figure 2 shows the temperature
dependence of the conductivity of the semiconductor
(temperature suspension of the conductivity logarithm).

Figures 1 and 2 show the temperature dependence of the
resistance for metals and semiconductors and Ino — the
inverse value of the temperature. The conductivity of
semiconductors is explained by zone theory. The presence of
activation energy for semiconductors AE — indicates that a
certain amount of energy must be supplied to the
semiconductor in order to create conductivity. This energy
can be carried out by various methods, for example, by heating
the semiconductor (giving thermal energy), illuminating matter,
by radioactive radiation, by the influence of electric and

12



magnetic fields, by creating high pressure, etc. All this shows
that  semiconductors are substances whose electrical
conductivity varies strongly under the influence of external
factors such as temperature, pressure, external fields,
lighting, and radioactive radiation.

495N

1/T k 1 /m 13
Figure 1. Temperature Figure 2 Dependence of the
dependence of the resistance  inverse value of temperature
of metal and semiconductor. In o — in metals and
semiconductors.

Since the conductivity of semiconductors is close to zero
at an absolute temperature ( 77 — (Qconditional) and when no
additional energy is supplied from the outside in any way,
semiconductors are substances that have conductivity only
when excited. Although there is no difference in principle
between semiconductors and dielectrics, the difference between
them and metals is very noticeable.

The effect of various factors on the conductivity of
semiconductors manifests itself in different ways, depending on
the properties and structural properties of the substances. Under
the same external influences, the same semiconductor has
completely different conductivity, depending on the purity of the
monocrystals, the perfection of the crystal, the defects in the

13



crystal, the concentration of different adsorption atoms, etc.

There are two types of semiconductors: ionic and
electron-type. In ion-type semiconductors, conductivity occurs
with ions, and therefore the process of current passing through
the ion-type semiconductor is accompanied by changes in
composition and structure. Therefore, this type of
semiconductor material is not used in the manufacture of the
device. This is due to the fact that they are subject to
disintegration (wear) during the current flow process, and the
parameters of the device change. The following table shows
some semiconductor elements in the table "Periodic System of
Elements."

In electron-type semiconductors, the charge carriers are
electrons, and therefore the process of transporting material does
not occur when passing through an electric current, so the
characteristics of devices made of electron-type semiconductors
remain unchanged for a long time

Table 2
m m | Iv | Vv \% 1 A\ 11
Cateparies
Periods
11 Be | B C N (0}
111 Al | Si P S Cl
v Ga | Ge | As Se Br
A\ In | Sn | Sb Te J Xe
VI Pb | Bi Po At

In the modern era, along with simple semiconductors,
semiconductor materials with highly diverse and complex
compositions have also been developed. At present, this variety

14




continues to expand. Simple semiconductor substances include
12 elements found in the Periodic Table: B-boron, C-carbon, Si-
silicon, P-phosphorus, S-sulfur, Ge-germanium, As-arsenic, Se-
selenium, Sn-gray tin (stannum), Sh-stibium, Te-tellurium, and
I-iodine. Among the elemental semiconductors, germanium and
silicon are the most widely used and the most abundant in nature.
Based on these semiconductors, a large number of devices such
as semiconductor diodes, transistors, thyristors, etc. are
produced. There are numerous binary, ternary, quaternary, and
other complex compounds that possess semiconductor
properties. The general chemical formula of binary compounds
is expressed as AXB8-X, where element A belongs to group x
and element B belongs to group (8-x). For example: Al BVII,
AIIl BVI. Materials such as AgCl, CuBr, KBr, LiF, InSe, GaSe,
and others belong to the class of binary semiconductors.

15



SECTION 2. TEMPERATURE DEPENDENCE OF
THE CONDUCTIVITY OF METALS

The foundation of modern ideas about the electrical
conductivity of metals and semiconductors was laid by Drude in
1900. This theory was later further developed by Lawrence.
Zommerfeld further developed this theory by incorporating
elements of quantum statistics. A further development of the
theory of electrical conductivity is based on the quantum
mechanical theory of a solid object. In the theory of
semiconductors, the Drude and Lawrence approach retains its
relevance today. To this end, let's take a general look at the basics
of classical electron theory.

Many concepts of semiconductor physics are based on the
electron theory of metals. On the basis of this theory,
characteristic quantities such as the electron conductivity of
semiconductors, the validity of freight carriers, etc., are also used
for semiconductors in the appropriate order.

In the classical electron theory of metals, the free electron
gas in metals is considered to be an ideal gas in molecular
physics, similar to that of molecular physics, which is in thermal
equilibrium with the ions of the crystal cage. In this case, the
specific volume of the gas and the interaction of electrons with
each other are not taken into account. The state of each particle
is characterized by the sum of six numbers: x, y, z coordinates,

and U, Ly, L, velocity (or also Px, Py, Pz momentum), or by

two T and V (or P) vectors. According to the classical theory

I, & 107" m, the specific volumes of electrons cannot be taken

3

into account, since VO = 10_45 m~ the radius of electrons is

in the arrangement and the volume corresponds to it. If we

16



assume that the concentration of electrons n =~ 1028 1’1‘1_3 is in
the arrangement, then the total volume of free electrons in the
volume considered under normal conditions is equal to the total
volume  of  electrons under normal  conditions.

b=nV, = 10%® .10 =107"" He took his part. This is a

very small number, as it turns out. However, it is important to
consider the interaction between electrons. Thus, since the

charge of the electrons e:1,6-10_19 is KI, the Coulomb

interaction force between them I = 10_10 at a distance m in

the crystal lattice is 2 10_8 N, in this case, each electron can
acquire an acceleration m/sec2 under the influence of such a
force, and the potential energy of the interaction between them is

within 2 - 1022 r= 10_10 the crystal lattice.It is assumed that
it is in the form of ~14 eV at a distance m. In such a convergence,
the total energy of the coulomb interaction (repulsion) of the
electrons must have a very large value. However, as the
experiment shows, the energy of electrons in metals is negative
compared to the energy of infinitely spaced electrons. This is due
to the fact that, in addition to the coulomb repulsion forces of
electrons from each other, they also have gravitational forces
reciprocal with their nuclei. The interaction energies of electrons
with nuclei are the interaction energies between them. The
electron moving in the crystal lattice in the field created by
all the electrons and nuclei is affected by both repulsion and
gravitational forces. Under the simultaneous influence of
these two types of forces, the movement of an electron gives
rise to the idea of free movement.

Electrons move chaotically in the crystal lattice. During
this movement, the electrons collide with the ions of the crystal
cage, and as a result, their velocities change at any moment in

17



terms of value and direction. A change in the velocity of the
electrons causes the kinetic energy of the electron to change. In
the case of thermodynamic equilibrium, the temperature of the
electron gas must be equal to the tempe-rature of the ions in the
cage. This means that as a result of collisions, neither the electron
gas to the cage ions nor the cage ions are energized on average.
If we change the temperature of the electron gas, the
temperature of the cage must also change due to the exchange of
energy between electrons and the ions of the crystal lattice.

18



SECTION 3. ELECTRON THEORY OF
ELECTRICAL CONDUCTIVITY OF SOLID
OBJECTS.

In 1900, Drude laid the groundwork for scientific ideas
about the electrical conductivity of metals and semiconductors.
Lawrence later developed this theory. Zommerfeld brought this
theory to a modern level by incorporating elements of quantum
statistics. In modern times, the theory of the electrical conductivity
of a solid is based on the concepts of quantum mechanics. This
theory is now known as the Drude—Lawrence theory. Let's take a
general look at the basics of classical electron theory.

Many concepts of semiconductor physics are based on the
electron theory of metals. On the basis of this theory, quantities
such as electron conductivity, load carrier conductivity, free
escape distance, etc., are also applied to semiconductors,
respectively.

In classical electron theory of metals, free electrons in
the thermal equilibrium with the ions of the crystal cage in the
metal are regarded as the ideal gas in molecular physics. In this
case, the specific volume of the ideal gas and the interaction of
electrons with each other are not taken into account. The state of
each particle is divided into six numbers: three x, y, z

coordinates, and three L,,Ly, U, Velocity (or Px, Py, Pz
momentum) is characterized by the sum of momentum. Often the
radius of a particle in a crystal T and the velocity vector. V (or
P It is made up of clarifications. Radius of electrons according
to classical theory I, z]O_15 mlIn the case of the Spurs, the
Spurs are in the same league as the Spurs. V) = 10~ m>In this

case, it is practically impossible to calculate the specific volumes

19



of electrons. If the concentration of electrons 1 ~ 10% m ™ If we
assume that the electrons in the free electron gas are the total

volume of the object. V' =nV, =10"-10" =10"" He

might have taken his part. This is a very small amount compared
to the total volume. However, the interaction between electrons

cannot be overlooked. The charge of electrons e =1,6-107"

K|, in the Crystal Lattice r=10""" m A Close Encounter
Between the Forces of Darkness 2 -10™° N This is because each

electron is under the influence of this force. 2 - 10% m/san2 It is
possible that the energy of the interaction between them is within

the crystal cage. I = 107"m Olaqo ~14 eV If we look at it this
way, we can see the importance of interoperability. In this case,
the total energy of the Coulomb interaction (repulsion) of the
electrons must have a very large value in such an approximation.
However, as the experiment shows, the energy of electrons in
metals is negative compared to the energy of infinitely spaced
electrons. This is explained by the fact that in addition to the
coulomb repulsion forces of electrons from each other, they also
have gravitational forces reciprocal with their nuclei. The
interaction energies of electrons with nuclei are the interaction
energies between electrons.

The electron moving in the crystal lattice in the field
created by all the electrons and nuclei is affected by both
repulsion and gravitational forces. Under the simultaneous
influence of these two types of forces, the movement of an
electron gives rise to the idea of free movement.

Electrons move chaotically in the crystal lattice. During
this motion, the electrons collide with the ions of the crystal cage,
and as a result, their velocities change at any moment in terms
of value and direction. A change in the velocity of an electron

20



causes a change in its kinetic energy. In the case of
thermodynamic equilibrium, the temperature of the electron gas
must be equal to the temperature of the ions in the cage. This
means that as a result of collisions, neither the electron gas to the
cage ions nor the cage ions are energized on average.

The temperature of the electron gas changes, and the
temperature of the cage must also change due to the exchange of
energy between electrons and the cage ions. Since the scattering
of electrons during collisions with the cage is random, the
average velocity of an electron over a long period of time and its
average displacement must be zero. Since all electrons are in the
same condition, this condition is true for any electron. Thus,
since the mean displacement vector of electrons in chaotic
thermal motion is zero, the thermal motion cannot create an
electric current, i.e., a directed flow of electric charges from any
cut-off. Therefore, in order to create an electric current, it is
necessary to create a directional movement of the loaders.

Such directional motion of freight carriers can be created
due to the influence of electric field, temperature gradient,
uneven illumination of the crystal, radiation of the crystal and
other factors.

If we create an electric field with an intensity of E in a

metal, then the force is acting like every electron F'=¢eFE .
Under the influence of this force, the electron

—

. F e
a=—=—F (1)
m m
It takes the urgency. The velocity of an electron over time t is

the speed at which an electron is absorbed

. .. et~
v=at=—F )

21



If the electron has an initial velocity 6T , then the velocity of t is

also the velocity of the electron.

- - et - _
at+v,=—E+0, 3)
m
They can. (3) It is evident from the statement that the
accumulations of the velocities of the electrons in the direction
of the field decrease, while the accumulations in the opposite
direction of the field, on the contrary, increase, and as a result,
the whole electron gas takes a directional motion. Thus, in
addition to the chaotic motion of electrons, there is also an
additional motion of electrons directed against the field.
In an electric field, the entire directional motion of

electrons is called drift, and the velocity of this movement U ,

is called the drift velocity. During the period of t-time E , an
electron is formed under the influence of an intense electric field.

2
i(t)="E
2m
4
It changes its location.

In classical electron theory, a change in the velocity of an
electron is seen as the result of an electron's interaction with a
crystal lattice (atom or ions). In other words, the interaction of
an electron with a lattice atom or ion is similar to the collision of
particles in mechanics. To characterize the motion of the electron
{, the concepts of the average length of the free escape path and
the time interval expended on 7 it is used. 7 The average time

interval between two consecutive collisions / is called the
average running distance.
The average running distance is related to the average

22



running time as follows.
(=vp7 )
This is the U average velocity of the electron's thermal

conduction.

From the above judgments, it is possible to determine the
average drift velocity.
Since the velocity of motion of the electron at the moment t = 0
is equal to zero, then t = T instantaneously correspondingly

r=2"F 6)
m

We can write it. The drift velocity must be equal to the
numerical average value of the starting and ending velocities:

~  O+4ar er
Oyj=—=—"FE

2 2m
From the above expression, it can be seen that the average

(7

velocity of directed motion E is directly proportional to the
intensity of the electric field.

The quantitative factor that correlates the drief
velocity to the intensity of the electric field is called the
validity of electrons and is usually /£ denoted by the letter:

Uy = UE (®)
Let's take a look at the comparison of the above
statements:
et
H=—
2m
In other words, the conductivity of electrons is equal to
the drift velocity of a single field of electric intensity in
numerical terms.

23



If there is a concentration of electrons 7 , then the
density of the electric current passing through the unit width at a
single time:

J =nev,; =enuE =oF )
They can. This expression is differently an expression of Ohm's
law. (9) For special electrical conductivity, we take from the
expression:

o =enu (10)
Or let's take it:
o= e’nrt an
2m

The expression (11) was taken by Drude. If we 7 find it from
the expression (5) and write it in place of (11)

e2nt
O =
2mUT

(12)

We get it.
Ohm's law applies only when the concentration and
efficiency of the freight carriers do 4 not depend on the

intensity of the electric field. These areas are called weak
electrical fields. However, as the field intensity increases, the
moment comes when the concentration and density of the
electrons does not remain constant, but changes. These electric
fields are called strong electric fields. In strong electric fields,
deviations from Ohm's law are observed, resulting in the
emergence of entirely new effects. Let's take a look at an
example of a change of pace. In the deduction of Ohm's law, we
assume that at the end of the free escape path, the electron gives
its energy completely to the cage when it collides with the ion of
the cage. In weak electric fields, the drift velocity is very, very
small than the velocity of heat movement, so its duration does

24



not depend on 7 the intensity of the electric field £ . However,
with the increase in the electric field, the speed of the drift also
increases, and the moment comes when it is in the same order as
the speed of heat movement. In this case, it is a free escape.

14
T=——- (13)
Uy +Uy4

The smaller the velocity of thermal movement U, the smaller
the temperature of the object, the greater the load-bearing

capacities in weak areas, the E smaller the values of the crisis
areas corresponding to the deviations from Ohm's law.

If we destroy the electric field at any given moment, then
the directed motion of the flood of electrons will continue until
they completely transfer the additional energy they gain in the
field to the crystal cage and complete their movements. This
directed motion is interrupted after the average 7 time, and the
chaotic thermal motion of the electrons is restored. Thus, as can
be seen from the judgments, while collisions bring a set of
electrons into equilibrium, the electric field disturbs this
equilibrium.

The transition of any system from imbalance to
equilibrium is called the relaxation process or relaxation,
and the time it takes to do so is called the relaxation period.
In other words, when it comes to relaxation, it is understood
that the time it takes to restore the disturbed balance for any
reason. Based on the above-mentioned judgments, it can be
noted that the period of free escape is the period of relaxation.

In the International System of Units (ISS), electrical
conductivity is measured in simens (Sm) and specific electrical
conductivity is measured in simens/meter (Sm/m). In this case,
the formula (8) for the unit of power in BS

25



[ 1] =(4-san’ Jeg™!

We get it. Units of velocity and electric field intensity are used
to calculate the unit of velocity.

[u] =

Some can be expressed.

m2

V-san

26



SECTION 4. CHARACTERISTIC PARAMETERS
OF SEMICONDUCTORS; SPEED OF ELECTRONS,
FREE RUNNING DISTANCE, CONDUCTIVITY OF

ELECTRONS

As a result of the collision of electrons with the cage, a
scattering process occurs. Typically, the scattering of electrons
from the cage is random. Therefore, the average velocity of an
electron over a long period of time and its average displacement
must be zero. Since all electrons in a crystal are in the same
condition, this condition is true for any electron. Thus, since the
mean displacement vector for electrons in chaotic thermal
motion is zero, the thermal motion cannot create an electric
current, i.e., a flow of electric charges from any cut-off. In order
to create an electric current, a directional movement of the
loaders must occur. Such a directed movement of freight carriers
can be made possible due to the influence of factors such as the
electric field, temperature gradient, uneven illumination of the
crystal, and so on.

If we create an electric field of E-intensity in a metal wire,
then each electron is affected by the force of the electric field
ﬁ' = eE . Under the influence of this force, the electron

—

. F e
a=—=—F (1)
m m

He takes the urgency. The velocity of the electron gained
during the period of time
et -
—E 2)
m

U =at

27



If there is an initial velocity of an electron 5T , then the velocity

of the electron at t moment of time is the velocity of the electron.
" . et = _
at+v, =—E+0v, 3)
m

They can. From this it can be seen that the accumulation of the
velocities of the electrons in the opposite direction of the field
decreases, while the accumulation in the opposite direction of the
field increases, and as a result, as a whole, the entire electron gas
receives a certain directional motion. Thus, in addition to the
chaotic motion of electrons, there is also an additional motion of
electrons directed against the field as a whole.

In an electric field, the direction of the electrons as a
whole is called the drift motion, and the velocity of this

motion L ,is called the drift velocity. During the period of t-

time E , an electron is formed under the influence of an intense
electric field.

(t)=—E 4)

It changes its location.

In classical electron theory, a change in the speed of an
electron is seen as the result of its interaction with the crystal
lattice (atoms or ions). In other words, the interaction of an
electron with a lattice atom or ion is likened in mechanics to the
collision of particles. In this case, it is assumed that the electron
travels the distance between two successive collisions like a free
particle, without being affected by the cage and the rest of the

electrons. To characterize the motion of an electron £ , the
concepts of the average length of the free escape path and the
time interval expended on 7 it are introduced. Here 7 is the

average time interval between two consecutive collisions, /
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and the average running distance is the average running
distance.

Of course, the average running distance is the average
running time.

{=vrT (5)
Someone has to be in a relationship. Here Up is the average

velocity of heat movement. From the above judgments, it is
possible to determine the average drift velocity. Since the
velocity of motion of the electron at the beginning t=0 is equal to
zero, t= T instantaneously corresponds to zero.

ar=—2FE (6)

We can write it. The drift velocity must be equal to the numerical
mean of the beginning and end velocities: i.e.
5d:0+ar:£E )
2 2m

From this expression, it can be seen that the average velocity of
the directed motion E is directly proportional to the field
intensity of the electric field.

The quantitative factor that correlates the drief
velocity to the intensity of the electric field is called the
validity of electrons and is usually L/ denoted by the letter:

Oy = HE ®)
To compare (8) and (7)

er (50
=—, a
H 2m

We get your expression. From this it can be seen that the
efficiency of the electrons is equal to the rate of drift gained
by the electron in a field of uniform intensity in numerical
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value. If there is a concentration of electrons 7 , then the
electron flow passing through the single node of the sample at a
given time is the density of the electric current:

J =neb, =enyuF. = o )
They can. This equation is the expression of Ohm's law in a
differential way. A special electrical conductivity of the last
expressions

o =enyu (10)
and
o= e’nrt an
2m

We get it. The last expression was first taken by Drude. If we
7 find the expression (5) and replace it with (11), we get it for
conductivity;

e*nt
G =
ZMUT

(12)
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SECTION 5. A WEAK AND STRONG
ELECTRIC FIELD. RELAXATION
DURATION

It is derived from classical electron theory that Ohm's law
is paid only if the concentration and validity of the loaders do 1

not depend on the intensity of the electric field. This field is
called a weak electric field. However, as the intensity of the
electric field increases, there is a moment when the concentration
and charge of the electrons does not remain stable and begins to
change depending on the field. These electric fields are called
strong electric fields. In the case of strong electric fields, there
are exceptions to Ohm's law, which results in the emergence of
entirely new phenomena. Let's take a look at this as an example
of a change of scenery. In the deduction of the expression of the
Ohm law, it is assumed that at the end of the free escape path the
electron gives its energy completely to the cage in a collision
with the ion of the cage. In weak electric fields, the drift velocity
is very, very small than the velocity of heat movement, so 7 its

duration does not depend on the intensity of the electric field £
. However, with the increase in the electric field, the speed of the
drift also increases, and the moment comes when the drift speed
is the same as the speed of the thermal movement. In this case, it
is a free escape.

/
T=——"— 6]
Uy + Uy
It decreases accordingly, which leads to a decrease in
conductivity, as well as a decrease in electrical conductivity.
If the electric field disappears at any given moment, then
the directed movement of the flood of electrons will continue

until they completely transfer the additional energy they gain in
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the field to the crystal cage and complete their movements. This
directed motion is interrupted after an average 7 time, and the
mixed (chaotic) thermal motion of the electrons is restored. Thus,
while collisions bring a set of electrons into equilibrium, the
electric field disturbs this equilibrium.

The transition of any system from a state of imbalance
to equilibrium is called the relaxation process or relaxation,
and the time it takes to do so is called the relaxation period.
In other words, when it comes to relaxation, it is understood
that the time it takes to restore the disturbed balance for any
reason. In other words, the time to relax is the time to relax.

In the International System of Units (BS), electrical
conductivity is measured by simensis (Cm), and special electrical
conductivity is measured by simens/meter (Cm/m). It is
measured. In this case, we will get the following for the unit of
execution in BS:

[u] = (A'Sal’l2)’(q_1
Units of velocity and electric field intensity are used to calculate
the unit of velocity.
[ =
V- san
Someone can express it.
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SECTION 6. CRYSTAL CRYSTALS.
TRANSYLATION PERIOD

All solids in nature are divided into two groups: crystalline
and amorphous substances. Most solid semiconductors and solid
metals have a crystalline structure. The set of atoms that make
up these substances is arranged in a certain order in space. When
we talk about the orderly arrangement of atoms in space, we
understand the properties of spatial periodicity or
translation symmetry. The concept of a crystal lattice is used to
describe these regularities. A crystal cage can be thought of as a
three-dimensional grid. Atoms (ions or molecules) are located at
the node points of this network. It is possible to imagine three

— - -

a1 a» vectors that are not on the same plane @ 39 and when

you move these vectors along the length of the crystal by the
same number of their exact times, they overlap (repeat) with
themselves. In this case, since the effect of thermal motion and
each real crystal are limited, it is not necessary to take into

account the presence of outer surfaces. ai(i =1,2,3) The

directions of the vectors can be selected in different ways in the

—

cage. On the other hand, @;- when you move a crystal as many

—

vectors equal to the exact times of the crystal, it @;— overlaps on
its own.Vectors are the smallest vectors that pay the periodicity

in the selected directiond@ . In such a selection, t_i,. the vectors
are called translation, scale, or fundamental vectors, as well as
the translation period of the crystal lattice. t_il. A parallel piped

element or crystalline core built on three vectors is called a

— — —

crystal core. @i @2 And @3 let us orient the vectors in the
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positive directions of the X, y, and z axes in the right coordinate
system. He is right on the right side of the

In the coordinate system, the vector product is the volume of the
elementary nucleus.

Q, =(afa:a: )= as|ara: )= a:|esa ) @

Someone can express it.

The arrangement of atoms in the elementary nucleus is
different for different matters. Atoms are located at the vertices,
faces, and intersections of the diagonal of the parallelpipe. If we
were to put a large number of such elementary nuclei together in
an orderly manner, we would get an ideal monocrystal.

The simplest linear cage is used to determine the geometric
properties of a crystal cage. A linear cage is also known as a
one-dimensional cage. In such a cage, the particles are arranged
periodically along an infinite line. Such a cage can be achieved
by moving an atom or group of atoms along a straight line @ as
sequentially as many as the same pieces. In the case of a linear

lattice, we have only one r

a ‘=a translation vector, and the
1

volume of such a lattice | is equal to the length of this segment.
Q,=a

Figure 1 shows three different linear cages. The black and
white circles represent different types of atoms.

a) —O O O o—»>

b)—o—o—o—o—»

—_
a
O)
\ %

"

c)—O ®

Figure 1. A linear one-dimensional cage
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As can be seen from the condition of payment of

periodicity , @ in the case of) the linear lattice consists of one,

band in ¢ the case of ) and ) in the case of two atoms.

Accordingly, @ the cages are simple or primitiveb) and ¢ the
cages are called complex cages. Figure 2 shows the plane cages.

—

If the principal a; vectors are selected in such a way that

any translation of the lattice 72;_ can be described by integer

values Zn,- a; , then the a; elementary core on which it is

built is called a primitive core. A lattice in the form of 2, a is a
simple lattice. Another simple lattice in the form of 2,b is
described.

a) b) c)
Figure 2. Planar lattices

If we place the same type of atoms at the intersections of
the diagonals of the parallelograms in the lattice of this lattice in
the form of 2,a, we get the lattice in 2.b. In such a lattice, the
primitive nucleus can be selected as a striped part, and if we shift
the atoms at the intersections of the diagonals in the same way,
then we get a primitive nucleus with two atoms, as described in
Figure 2,c. If we place atoms of different types at the
intersections of parallelograms in the form of 2,b, a complex
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cage is obtained, since in this case the nodes of the cage are not
equivalent.

a) b)
Figure 3. Symmetrical Plane Cages

A symmetrical plane lattice is depicted in Figure 3.a.d1 A a2
primitive nucleus, which is built on vectors, consists of two
atoms. However, if we place the same type of atoms at the

intersections of the diagonals of hexagons, we get a simple lattice
(Figure 3,b).

36



SECTION 7. CRYSTALLINE SYSTEMS. BRAVE
CAGES

The atoms that make up solid bodies arrange in space with
a certain regularity, forming a crystal lattice. The basis of the
crystallographic cages is a geometric figure in the form of a
parallelepiped. In the science of crystallography, it has been
accepted that the lengths of three sides intersecting on one

a, b, C side of a parallel pipe, and the angles between these sides

ac=a, bc= ,B , are indicated by and with and ab = Y
(Fig. 1).
In the case of a three-dimensional metallic cage, the

tongues and angles of the crystal core a,b, C are denoted by the

tongues and angles O/, ,3,7/ . Depending on the value of the

crystal core, tongues, and angles, the crystals are divided into 14
possible types of crystal structures and 7 syngonia. The 14 crystal
cages that are part of these seven crystal cages are called Brave
cages.

1. A Regular or Cubic Syngon (Fig. 1). In this case, the

angles and sides are equal @ = 3 = 90" to each other and

are in harmony @ = b = cwith each other. Three types of
cages are possible in this system: a simple cage (Figure 2.a),
a volume-centered cage (Figure 2.b), and a surface-centered
cage (Figure 2.c).

2. Tetragonal or quadratic syngony. In this case, the seat of
the elementary core is a rectangular parallelepiped with a

square seat (Fig. 3) & :ﬂ =7/=900 and a=b#c.

In this system, there is a simple (3 a) and volume-centered
(Fig. 3 b) cage.
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3. Rhombic or orthogonal system. In such a lattice
a=p=y= 90°, a # b # ci.e., the elementary core is
a rectangular parallelpiped with different languages. There

are four types of cages here (Figure 4): simple (a), base-
centered (b) , volume-centered (d) , and surface-

centered (C).

4. Monoclonal system: = /=90", y#90" and
a #b#c. In this system, the elementary core mail is

parallelogramed, with two pairs of faces rectangular and one
pair of faces parallelogram. In this syngon, two types of
cage are possible: simple (@ ) and base-centered ( b) cage

(Fig. 5).
5. Rhombohedric or trigonal syngony.

a=b=c,a=L=y#90"1tis less than 1200. In this
case, the primary core is the rhombohedrk. There is only one
type of primitive cage in this syngon (Fig. 6).

6. Hexagonal syngony (Fig. 7). In this system & =12 00,
,B =y = 90" a=b+#c .. Here, three simple nuclei

together form a hexagonal prism, which is the elementary
core of syngony.
7. Triglycerides Synagogues. In this system, all languages and

angles are different, i.e., & # ﬂ zy.a# b # ¢ There is

only one type of cage here (Fig. 8).

Often there are structures in real crystals that cannot be
described with a Brave cage. Such structures are depicted by
several Brave cages dressed (slid relative to each other) clad
inside each other.
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Brave Cages

Figure 1

a) b) c)

a) b)
a) b) c)
Figure4
Figure 5
a) b)
Figure 7
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Figure 2

Figure 3

Figure 6

Figure 8



SECTION 8. A MODEL FOR THE
CONDUCTIVITY OF SEMICONDUCTORS
IMAGINE. AN UNDERSTANDING OF THE HOLES

The formation of a crystal is formed on the basis of the
interaction of the l-cage atoms, and the nature of this interaction
is determined by the structure of the electron layers of the atoms
that make up the crystal. In this case, the main role is played by
the exchange effect, as a result of which the atoms interacting
during the formation of a crystal lattice can exchange electrons
with each other and give or receive electrons. This process leads
to the formation of gravitational forces between them. If a crystal
lattice is made up of atoms of the same element, it is called
homopolar bonds because these bonds are formed between the
same atoms . Homopolar bonds are primarily involved in
valence electrons, so it is also called covalent bonding. The
strongest covalent bond occurs when atoms communicate with
pairs of electrons with spins directed opposite each other. It
seems to me that the covalent bond must have the property of
saturation. The presence of the third electron cannot strengthen
the bond, because then the Pauli principle is violated.

This property of a covalent or electron pair bond is derived
from the Pauli principle, and for the given case, it can be
expressed as follows: two electrons with the same spin
projections cannot be located in the same region of the space
between atoms. Examples of covalent-related substances include
diamond, silicon, germanium, etc.

If the crystal lattice is formed as a result of the interaction
of atoms of different elements, it shifts towards the atom that has
more electrons in the oblast valent zone of the electron cloud
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with the maximum density, as a result of which this atom is
converted into a negatively charged ion, and the other atom is
converted into a positively charged ion, and the Coulomb
interaction force plays a key role between them, such a bond is
called ion bonding, respectively. Ion bond is found in alkaline-
hologenic salts (NaCl, KCI, LiF, etc.) It makes itself more self-
explanatory. Ion bonding can also be viewed as a limit state of
covalent bonding. In general, it is never possible to talk about a
single communication, it can only be said that any
communication prevails. Therefore, when we are talking about
sulfides or oxides of the elements of the second group, for
example, we can say what percentage of the bond is ion, and what
percentage belongs to another type. The other limit of the
exchange interaction occurs in metallic communications. In the
crystal cages of metals, some of the valence electrons, which are
very weakly bonded with their atoms, do not belong to a specific
atom, but belong to the crystal cage as a whole, and are collected.
Even the electron gas in the crystal lattice, which behaves as a
kind of ideal gas, creates metallic bonds and, as the definition
suggests, is mainly characteristic of metals. In any case, there can
be no sharp boundary between these three connections. Organic
crystals exhibit weaker bonds as a result of the Van der Waals
interaction, also known as molecular bonding. In such crystals,
the density of the electron cloud within the cage can change at
any time as a result of fluctuations in different parts, even if it is
small, which leads to the formation of a dipole moment in that
part. The interaction of such instantaneous dipole moments
ensures the stability of the crystal as a whole.

Thus, all of the types of communication that we see in real
crystals can manifest themselves to varying degrees at the same
time, but since always one of them plays a superior role, the
properties of the crystal are largely determined by it. Covalent
communication plays a decisive role in the formation of
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semiconductor properties, which are our main research objects.
Let wus analyze the silicon crystal example of
semiconductor electrical conductivity. Germanium and silicon,
which have a wide range of applications, are mainly simple
semiconductors with covalent bonds, with a diamond-type
crystal coefficient (Figure 1.23,a). Each crystal structure is
characterized by the number of closest neighboring atoms
located at equal distances (d) from the atom taken. This number
is called the coordinate number and is denoted by z. For example,

a simple cube for a Z = 6, d= a, crystal is a volume-centric

z=38, dzga.

cube for a crystal.

The elementary lattice of a diamond crystal groove can be
described by a Brave cube lattice centered on two surfaces that
are slid diagonal for about a quarter of it relative to each other
(Figure 1). In such a lattice, each atom has four closest neighbors
(z=4). As can be seen from the picture, in a cubic crystal lattice,

an atom falls on each elementary nucleus§ . 1 +6- l +4=8,1it
8

should be noted that the elementary core in the lattice can also be
represented as a cube (Fig. 1,¢), which is an atom in the center of
the cube and four atoms at the vertices. Each of these atoms has
two atoms.

Figure 1. Diamond Crystal Crystal Lattice
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A diamond-like silicon atom has 14 electrons and is
divided into electron layers as (1s%)(2s%)(2p®)(3s*)3p®. The third
layer, which is not fully filled, has 4 valence electrons. As we
have noted, silicon has a diamond-type crystal structure, and
each atom located in the center of the tetrahedrin in such a cage
is connected to its electron pairs with the other four atoms that
are closest to it. Thus, the four valence electrons of each silicon
atom are involved in the formation of the tetrahedric covalent
bond. Since such a crystal does not have free carriers, it does not
conduct an electric current. In order for a crystal to have
electrical conductivity, it is necessary to tear off some of the
electrons involved in the covalent bond by any means (quantum,
thermal energy, irradiation, etc.) and release it inside the crystal
lattice. In the energy diagram, let's refer to the energy of the
electron involved in the communication as EV, and the energy
of the electron disconnected from the communication with ES.
As you can see from this diagram, the energy used to break the
connection is ES-EV. This energy is equal to 1.08 eV for silicon.
When an electron is disconnected from the bond, an incomplete
bond is formed.

Figure 2 shows the ideal crystal diagram (a), the formation
of a free electron as a result of the thermal dances of the crystal
cage (b), and the absorption of the corresponding energetic
photon (c). A covalent bond moves chaotically on an electron
crystal that has been torn from the bond.

If the electron approaches the place where it is
disconnected, it can send its energy into the cage or radiate it in
the form of a photon and reunite with the atom. This process is
called recombination. This process is the opposite of the process
of separation of the bonded electron from the bond. In the
process of generation, a free electron is directly generated, while
in the process of recombination both carriers are destroyed.
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a) b) ©)

Figure 2. Formation of conductivity due to lattice
vibrations and the excitation of semiconductors

In a pure semiconductor, the number of free electrons and
incomplete bonds is the same, and therefore the electroneutrality

of the crystal as a whole is not disturbed. If we E apply an
external electric field to such a crystal, each free electron is

—_

affected by the force of this field enE , so they gain a drift

velocity in the opposite direction of the field, resulting in a
density of

j,=e unk=o F (1)
Some of them create a set of electrical currents. Here the
concentration of the n-electron is the strength of the pn-electrons.
While the concentration of electrons in metals does not depend
on external factors such as illumination, thermal energy,
radiation, etc., since these factors play a key role in
semiconductors, their electrical conductivity can vary over a
wide range. However, there are other mechanisms of
conductivity in semiconductors. Indeed, as a result of the motion
of the electron, the broken bond can change its position from one
atom to another, and this movement occurs in a manner similar

—

to the chaotic motion of an electron. £ When applying an

44



external electric field, the movement of electrons opposite the
field (drift motion) prevails, and they are able to occupy empty
contact points in the direction of their motions. If all the
connections are complete in ideal crystals, the movement of the
connected electrons would be impossible according to Pauli's
principle. The presence of broken communication points allows
electrons to move opposite the field, thereby allowing a set of
valence electrons to participate in conduction. In this case, the
validity of the bonded electrons should depend on the number of
vacancy sites (the greater the number of broken bonds in the
crystal, the more likely they are to be captured by neighboring
bonded electrons). If we denote the number of bonded electrons

by N, and their conductivity /1, then the corresponding current
density generated by them:

Iy =e, iy NE (2)
They can. There are two types of charge -carriers in

semiconductors - free electrons and bonded electrons. This is
why the final sentence of the sentence is:

j:jn+jN:(en/unn+eN/uNN)E 3)
This is expressed by the sum of the currents. The movement of
the connected electrons in the opposite direction of the field
gives rise to the movement of the broken communication points
in the direction of the field, which is equal to the charge of the
electrons and is as strong as the motion of the e+-positive charge
in the field (Figure 3). In this case, it should be borne in mind

that the positive charge e’ E is not due to the effect of the
force acting on it (the force cannot act in vain!), but because of
the movement of the electron opposite to the field, it changes
its position in the direction of the field. If we denote the
number of broken connections (vacancies) p and their validity
by nP, we get the corresponding current density for them:
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jN:eNlLlNNE:eplLlppE:j (4)
In the method of Brillouin zones, the mobility pP should not
depend on p. Therefore, the motion of bound electrons in the
direction opposite to the field can be replaced by the motion of
an elementary positively charged quasi-particle moving in the
direction of the field. This quasi-particle is conventionally called
a hole. The conductivity arising due to holes is called hole
conductivity. The parameter P denotes the concentration of
holes, uP is the mobility of holes, and e = ¢* is the charge of the
hole. Free electrons and holes generated in the crystal lattice due
to any external factor during the generation process are called
intrinsic charge carriers, and the conductivity they produce is
called intrinsic conductivity.

Figure 3. In the field of electricity and electricity
The Movement of the Vacancy

Semiconductors whose conductivity is generated by proprietary
carriers are called semiconductors.In specific semiconductors,
the concentrations of holes and electrons are the same: n = p, then
the final current density

j=of=(e,un+e,u,p)E=(0,+0,)E
(5)

46



Some can be expressed. If we take the validity as a scalar
quantity and mark it by their ratio for electrons and holes,

b= ‘ M, ‘ / ‘ M, ‘we get for the electrical conductivity of specific

semiconductors:

Hy

o=eun+e,u,p=e,pu, l+ =e,p,(1+b)

p

(6)
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SECTION 9. INTRINSIC CONDUCTIVITY IN
SEMICONDUCTORS
If we apply an intense external electric field to a

—

semiconductor crystal E , then since the force of the field
affects each free electron enE , they gain a drift velocity in the
opposite direction of the field, resulting in a current density.
Jj,=eunkE=o, F (1)
Some of them create a set of electrical currents. Here the
concentration of the n-electron is the strength of pn-them. While
the concentration of electrons in metals does not depend on
external factors such as illumination, thermal energy, radiation,
etc., since these factors play a key role in semiconductors, their
electrical conductivity can vary over a wide range. In addition to
this, there are other types of semiconductors that are also used in
semiconductors. Indeed, as a result of the movement of the

electron, the broken bond can change its position from one atom
to another, and this movement occurs in a manner similar to the

chaotic motion of an electron. £ When applying an external
electric field, the movement of electrons opposite the field (drift
motion) prevails, and they are able to occupy empty
communication positions in the direction of their movements. If
all the connections are complete in ideal crystals, the movement
of the connected electrons is impossible according to the Pauli
principle. The presence of broken communication points allows
electrons to move opposite the field, thereby allowing a set of
valence electrons to participate in conduction. In this case, the
validity of the connected electrons should depend on the number
of vacant positions. If we denote the number of bonded electrons

with N, and their conductivity £/, , then the corresponding

current density is given to them:
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Jy =€, tiyNE 2)
They can. Thus, semiconductors involve two types of charge

carriers - free electrons and bonded electrons. This is the reason
why the final density of the

J=Jntiy=(e,un+eyuyN)E ®)
The movement of the related electrons in the opposite direction
of the field gives rise to the movement of the broken
communication points in the direction of the field, which is equal
to the charge of the electrons and the movement of the e+-
positive charge in the field (Figure 2). In this case, it should be
taken into account that the positive charge changes its position

in the direction e E of the field as a result of the opposite
movement of the electron as a result of the force exerting it.
If we denote the number of broken bonds (vacancies) p, and their
validity by uP, we can write them for the corresponding current
density:

Jn =eyuyNE=e,p,pE = j (4)
Thus, the motion of the bound electrons in the opposite
direction of the field can be replaced by the motion of an
elementary positively charged quasi-particle moving in the
direction of the field.

Figure 2. The Movement of Electricity and Vacancy in the
Field of Electricity
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This quasi-particle is called a hole. The amount of time that is
generated by the calculations is called the calculus. P-quantity
is called the concentration of holes, uP is the density of holes,
and e=e+ is the charge of the hole. Free electrons and holes
formed in the crystal lattice due to any external factor are
proprietary carriers, and the conductivity created by them is
called proprietary conductivity.

Semiconductors whose conductivity is generated by
proprietary carriers are called proprietary semiconductors.

In specific semiconductors, the concentrations of holes and
electrons are the same: n = p, then the final current density

j=of =(e,un+e,u,p)E=(c,+0,)E
(5)

Some can be expressed. If we take the validity as a scalar
quantity and denote their ratio for electrons and holes

b=|u,|/u,

special semiconductors:

, we get for the electrical conductivity of

Hy
0'=en,unn+ep,upp:epp,up(l+ p J:epp,up(l+b) (6)
P
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SECTION 10. EXTRINSIC CONDUCTIVITY IN
SEMICONDUCTORS

It is clear from the study of the conductivity of special
semiconductors that the concentration of electrons and holes in
special semiconductors is the same. However, in some cases, this
condition is not met. This difference between the concentrations
of electrons and holes is created by the introduction of
extraneous element atoms into the semiconductors. In this case,
the atoms of the outer element are called supernovae. The
process of getting into the habit of getting into the habit is called
a slippery slope. To understand the essence of this conductivity,
let's look at the cases in which group IV element germanium is
adjacent to the atoms of group V and group III elements.

Suppose we have replaced one of the atoms in the
germanium crystal lattice with a phosphorus atom of group V
(Figure 1). As can be seen from the arrangement of phosphorus'
electron layers (P'3(1s%)(2s%)(2p®)(3s%)(3p?)), two of its five
valent electrons are at the level of 3s and three are at the level of
3p. Four of them are involved in covalent communications, and
the fifth, since there is no empty space in the communications,
belongs only to the phosphorus atom itself and remains in the
orbit around it. This means that it takes energy to release this fifth
valent electron of phosphorus.

For this reason, the admixture atoms can be easily ionized,
and as a result of the easy ionization of the five-valent
phosphorus atoms included in the four-valent germanium cage,
a very large number of free electrons are formed.

These types of electrons that can be donated by
themselves are called donor-type supplements. Phosphorus
atoms that lose their electrons are converted into positively
charged ions. However, these ions are not involved in
conduction, and their role is mainly limited to supplying the
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crystal with free electrons.

Figure 1. Model of free electron formation in phosphorus-
doped germanium crystal. a — in the planar representation; b —
in the energy band diagram

Along with the ionization of the adsorptive atoms, the
partial ionization of the basic material atoms also occurs, but
since their concentration and therefore their share of conductivity
are much smaller than that of the adsorptive atoms, the total
number of free electrons is very, very large than the number of
holes. Since the main charge is carried by electrons as the current
passes through such a crystal, they are called the main charge
carriers, and the holes are called non-primary charge carriers
(Figure 2). Such a semiconductor is called an electron or n-
type semiconductor. Since the electrical conductivity of an
electron-type semiconductor is p<<n and cp<<on,

0=0,+0,~0,=¢,l,N (1)

Some can be expressed.
Suppose that a germanium crystal contains three valents,
such as a boron atom. Since boron has three valent electrons, it
will remain unfilled with a germanium atom in a tetrahedric

envelope (Figure 2). In order to complete this bond, a valence
electron from a neighboring germanium atom must pass through
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that empty bond point, and as a result, thatgerm-nium atom is
converted into a positively charged ion.

Figure 2. Model of free hole formation in boron-doped
germanium crystal. a — in the planar representation; b — in the
energy band diagram

What we are trying to say is that we are still in the process
of developing an electron receptor that accepts electrons. The
number of holes in such crystals, as we have noted, is much
greater than the number of free electrons, and they play a key
role in conductivity. As a result, these semiconductors have a
perforated permeability. In P-type semiconductors, the main
loads are holes, so n<<p and on<<cp are conditioned and their
conductivity is met.

0=0,+t0,~0,=¢€,U,p 2)

Someone can express it.

Thus, it is common for an electron (n-type) conductivity
to be observed when the valence of the adsorptive atom is greater
than the valence of the element atom, and when it is small, the
permeability of the hole (p-type) is observed.

Since the concentration of freight carriers in a suspended
semiconductor is higher than that of a proprietary semiconductor,
the special resistance of any type of superconducting substance
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is less than that of pure one. In other words, when a
semiconductor is exposed to a substance, its electrical
resistance decreases.If both types of additives are present in the
substance at the same time, mutual compensation occurs (Fig. 3).
If the concentrations of the absorber and donor-type additives are
equal, then complete compensation occurs and the substance
behaves as a special semiconductor. Such substances are called
compensated semiconductors and have a high resistance.
Semiconductors that depend on the type of pollution are called
amphoteric semiconductors.

When the concentration of the adgent atoms is large
enough, the zone of admixture levels can expand and partially
cover the cold basin or valence zone (Fig. 4).

Figure 3 Figure 4

In addition, as the amount of additives in the
semiconductors increases, the ionization energies of the
superconducting centers decrease, and this ionization energy can
reach zero when the corresponding levels overlap each other at
sufficiently large values of the superconductor concentration.
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SECTION 11. CONCENTRATION OF ELECTRONS
AND HOLES. FERMI LEVEL

In order to determine the concentration of free carriers in
a certain zone, it is necessary to know the distribution function
of energy, in addition to the number of quantum levels falling
into a single energy interval in a single volume crystal (

Z
N(E)= Z—Ethis is the expression state function). f, (£') The

E probability that the energy level will be captured by the

1
electron fO(E ) is determined by the function. 5 The

distribution of particles in thermodynamic equilibrium of a

system of particles consisting of the same type of particles, which

is equal to single times of spini and follows the Pauli principle,

is subject to the Fermi-Dirac statistics. In this case, the electron
is in the crystal cage.

1
Jo(BT) =~
e +1

(1)

The ratio is compensated.

If the case density and distribution function are known, we
can calculate the concentration of loaders in any zone. If spin is
also taken into account, then the concentration of electrons can
be calculated by the following function

n= 2Tf0(E,T)N(E)dE )

It is the energy that corresponds to the F | E , lower and upper

boundaries of the given zone. If we want to calculate the
concentration of an electron in the conductivity zone, then we
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need to take the lower boundary of the integral from the bottom
of the conductivity zone: E1 = EC = Em].n , and the upper
boundary £ , = Emax . To make it easier to calculate,
E1 = Ec =0 we can choose the starting lineup. If we f take
into account the sharp dependence of the distribution function on

energy, then we can take the upper limit E2 = o0 (for large

energy prices fo —> 0). Then we can use the expressions (1) and

(2) to write (.2) as follows:

3
omt e L
w47z( mdnj E*dE

2

n=| 3)
’ e +1
Let's make the following substitution:
£ X, i n (4)
kT kT

And here X they are, and 7 they are nameless. X The
energy brought to is 7] called the Fermi level or the chemical

potential brought in. And if we are to make a change in the name
of the Prophet (peace and blessings of Allaah be upon him), then
we will be able to do it.

2N
n =T7;Fm(77) (4)

From this it can be seen that the concentration of electrons is a

function of temperature and Fermi level: 7 = n(1", F’)

We can also use the function of distribution for holes.
If any energy level is captured by an electron, then the
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probability that the electron will be at that level is 1. In this case,
the probability that the electron is not at this level, i.e., the
probability that there will be a hole at this level, will be defined
as follows:

F

Jo,(BT)=1=f(E,T)=1-—

e +1 e +1
Considering the above expressions, by analogy we obtain
for the concentration of holes in the valence band

1 1

)

3 1
Ey Ey 2m* E (E _ E)E dE
p= [/, (E)N(E)iE = | 4x hzdp (B -
o ’ g
e +1

(6)

it is given as
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SECTION 12. THE DENSITY OF THE STATE.
NUMBER OF QUANTUM STATES

The physical phenomena that occur in semiconductors are
acutely dependent on the concentration of free carriers in the
corresponding zones.

In order to find the concentration of free electrons (or

holes) in a crystal, £ it is E + dE necessary to know the
number of quantum levels falling into the energy interval and the
probability of an electron (or hole) being at these levels (i.e., the
distribution function). In an electron approximation, the
interaction of electrons with each other in the crystal is included
in the self-binding potential. Electrons move independently of
each other in such a potential field. In an electron approximation,
the electrons in the crystal can be viewed as ideal gas molecules.

Since this type of gas is l made up of particles with spins, it
2

will be subject to the Fermi-Dirac statistic in the state of
thermodynamic equilibrium. The distribution of electrons or
holes at quantum levels can be determined, the distribution
function of the load carriers according to the conditions, the
average cost of physical quantities, and the density of quantum
levels.

Suppose that a single-volume crystal E has a quantum
level £ + dE , taking into account the energy and dz the spin
in the interval.

The number of quantum levels in a single energy

interval in a single volume of a crystal is called state density.
It includes:

dz
— . 1
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If the probability of any quantum level being captured by an
electron in the temperature 1 interval observed at any
temperature interval is fO(E A ) known, then dE the number

of electrons in the interval is:
dn=f,(E,T)dz= f,(E,T)N(E)dE.  (2)
They can. To find the exact number of electrons in the region

under consideration, it is necessary to integrate the expression
(2) with the possible values of the energy:

n= j f(E,T)N(E)E, 3)

E
This E1 is the minimum cost of energy and the F , highest

(maximum) of energy in the zone. Since the expression () is
taken for a single-volume crystal, this expression gives the
concentration of the electron.

For the simplest case, let's determine the state density in
the conductivity zone Suppose there is only one minimum of
energy in the conductivity zone, and the energy around this

minimum is defined as follows:

272 2
E=E+ % _p P
8r°m;

. 4
2m; @

In this expression, the effective mass is a scalar quantity, while
isoenergetic surfaces are spherical in shape.

E(p)=const and

E(p+dp)=E(p)+dE =const
Let's take a look at the spherical layer that remains between the

two isoenergetic surfaces that satisfy the condition (Figure 1).
The size of this layer:

dV =4mp’dp. (5)
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To determine the ¢}/ number of quantum levels in a volume
here, it is necessary to divide it by the volume corresponding to
a level in the Brillyuen zone (momentum space). You can see

. . 3 .
that this volume is equal to /2 the volume. Let's show this for a
simple cubic crystal cage. In this case, the Brillyuen zone is in
the form of a cube, and its volume in the space of the wave vector

(k,. =+ i:1,2,3) is:
a

whois. p, =— hk In this case, the volume of the Brillyuen
2r
zone in the momentum space is as follows:
3 3 3 3
a2r) a a’N V

They can. Here, the @’ volume of the elementary nucleus in a

flat crystal cage is /N the volume of the crystal V' = a’N
(since in a simple cubic crystal there is one atom per elemental
nucleus, the volume of the crystal is equal to the volume of an
elementary nucleus multiplied by the number of atoms in the
crystal).

Figure 1.
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E(p) = const And E(p+dp) = E +dE = const the number

of quantum states between energy intervals is dE equal to the
number of states in a spherical layer with thickness
Since there is a level in each zone, as can be seen from the

expression (6), (V=1Sm3) it is for a crystal of uniform
V

volume —= = h3, i.e., each energy level in the Brillyuen zone

corresponds to a volume equal to (excluding spin friction). h’

When the crystal is formed, all other forms of friction
disappear and only the spin friction remains. And if we take into
account the spin, then we will see the number of levels in the
volume of the sphere layer (5):

dv 8z ,
dz=2- ?: h3 P dp @)
They can. p And dp E if we use the relation (4) to express
through, we get:

=(2m)*(E-E,)? ®)
and
dp = %(2771:)2 (E-E)dE. )

After a certain mathematical operation, the following expression
is obtained for the density of the state:

dz 2m, 2
N(E)=—=4r E—-E) 10
(E) dE (h j ( ) (1
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This expression refers to only one energy minimum in
the Brillyuen zone and the case density in the conductivity zone
for the case where isoenergetic surfaces are spherical.

In the same way, we can calculate the case density for the

valence zone. The expression of energy near the maximum.
2

E-E - L (11)
g 2m;

If this is the case, then we are going to take a look at the density:
3

(E, -E)*. (12)

2m
N(E)=4r

hz

To get an expression similar to the formula (12) for the
case density for holes, it is necessary to take the effective mass
of the holes as follows:

*E *é 3
m,, =(mlj + mzfuj . (14)
For example, for silicon m:p :0,591’110 , and for

germanium m, = 0,37m,.
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SECTION 13. SCHRODINGER'S EQUATION FOR
CRYSTAL

In classical mechanics, the motion of objects is the
mathematical expression of Newton's second law.
F=m?Z
dt
It is described by the equation. By means of this equation, when
the force acting on an object is known, the coordinate, velocity,
and trajectory of the object are determined. This equation is
called the basic equation of classical mechanics.

In quantum mechanics, the motion of a microparticle
cannot be described by Newton's equation. Because.
Microparticles have a dual nature. They behave like particles and
waves. In quantum mechanics, an equation must be found that
describes the motion of microparticles. This equation must take
into account the wave nature of the particle.

In quantum mechanics, the moment a particle is given its
state in space is Wdetermined by a function (x,y,z). WThe
function (x,y,z) has no physical meaning. However, the square
of this function is the probability that there is a particle at the
coordinate point x, y, and z of space at the given moment t.

A solid body is made up of a huge number of atoms and
electrons. To determine the energy spectrum and stationary states
of a system of such particles, it is necessary to solve
Schrddinger's equation:

HY = E¥ )

where the H Hamiltonian value of the crystal W is its specific
function, E is its specific value, or the energy of the crystal. The
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wave function of a crystal depends on the coordinates of all the
particles that make up it:
¥ =¥.5....;R R, )= PER,) @

- -

Here r11,r2,..., are the coordinates of the electrons i‘; ,

R],Rz,... or R(z the nuclei of the atoms.

The Hamilton operator combines the following types of
energy:

A

1) Kinetic Energy of Electrons T :

A

I,=31 =Z[—h—A[j &)

i i 2m

Here A; = Viz — 1 —is the Laplace operator for the C electron:

2 2 2
A~=V2:§X2+(Z/2+§2 )

1

2) Kinetic Energy of Nuclei T S

3) The Dual Interaction Energy of Electrons

T=YT =y - . )
2122 o
Here M o are the masses of the nuclei.
o*  o* o
A, = Tt—=+ (6)
ox>  oy® oz

Dual interaction energies of electrons U :
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—T i#]

e = ‘ ZUU (7
J

4) The Dual Interaction Energy of the Nuclei fj 5
N ZoyZge’

0,=-3 ZU ®
2a¢B4ﬂ80‘R RB‘ o#p op

Here Z o and ZBe — QL are the charges of the nuclei.

5) The Interaction Energy of Electrons with Nuclei

~ 4 e2 A
Ug, = _z g = ZUia ()]
i, 15 _Ra‘ i

6) The energies of all particles in the outer field \A/v :

A

V=V.%,..: R, R0 (10)

In this case, the Hamiltons of the crystal can be written on
the outside field as follows:

H=T,+T,+U,+U,+U_,+V

HY =E¥
Schrodinger's equation (11) includes a number of variables
3(Z+1)N, where N is the number of atoms in the crystal. (11) By
solving the equation (11), it is possible to determine all the
information about the crystal: the possible values of energy, the

(11

configuration of the nucleus, and the spatial distribution of
electrons. Since a crystal " about 1023 atoms in a volume of 1
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cm3, its equation (11) has a very large number of variables, and
therefore its exact solution is practically impossible. Therefore,
the main problem of solid state theory is to solve the Schrodinger
equation for the crystal by applying approximate solution
methods and obtain the necessary information. One of these
methods is the possible approximation for an electron moving in
the periodic field of the crystal lattice. This approach leads to the
energetic diagram of the crystal zone.

To solve Schrodinger's equation, it is necessary to bring a
system of interacting particles into a system of non-interacting
particles. In this case, the Schrodinger equation for the system of
particles is divided into a system of equations, each describing a
particle separately. Indeed, the total Hamiltonian of the system
can be expressed as the sum of the Hamiltonians:

H=YH, . (12)
k

It I:Ik depends only on the coordinates of the k-particle.
N 2 ~
H =—-A +U.(#) (13)
2 k
The wave function of a system can be expressed as the
product of the wave functions of individual particles, and the

energy can be expressed as the sum of their energy:

¥ =¥(%,5,..)= ()P, (5).. (14)
and
E=YE,, (15)
k

In this case, K and W are intertwined.

H (5 ) = B e (&) (16)

And they are the ones who
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The transition from equation of the system of interacting
particles (11) to a system of equations describing non-interacting
particles is possible within the framework of certain approximate
approximations.

Let's assume that there are no external fields:

V(fl,fz,...,;ﬁl,ﬁz,...):0 (17)

Before moving on to the simplification of the Sredinger
equation, the expression of the energy of a crystal

E= [, B Ry Ry AW, B s Ry Ry e (18)

Let's write it down. In this case, the integration is carried out at
the coordinates of all the particles.

dT:XmdYIdZI"'dXIledzl--':dTede (19)

LP(fi,...;Rl,...) The wave function allows us to

determine the motion of any particle in a crystal. With its help, it
is possible to theoretically determine the crystalline structure of
matter and its possible modifications from the minimum energy
condition of the state of the system.
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SECTION 14. ADIABATIC APPROXIMATION.
BORN-OPPENHEIMER APPROXIMATION

One of the methods for simplifying the Schrodinger
equation is the adiabatic approximation or the Born-
Oppenheimer approximation. The essence of this lies in the
significant difference between the motions of electrons and
nuclei, such that since electrons move at much greater speeds
relative to the nuclei, it can be assumed that at any given moment
the nucleus is at rest relative to the electron. The physical
meaning of this method is that the motions of electrons and
nuclei can be characterized independently of each other. Then
the crystal can be considered as a structure composed of two
subsystems: fast-moving electrons and practically stationary
nuclei. Thus, the problem concerning the system of nuclei and
electrons can be reduced to a simpler problem characterizing the
state of electrons moving in a lattice formed by these nuclei.

—

R a = Rg Since the kinetic energies of the nuclei are

equal to zero, and the potential energy of the interaction of the
nuclei is constant Face, it is possible to equate the coordinate
beginning to zero by selecting the coordinate beginning in the

appropriate order. In the meantime, T , = 0,and U ;= 0 in
the meantime, Tony Blair

H.=T.+U_, +U,_, (1)
Someone can write. Let's take a look at the wave function of
electrons ‘Pe . In this case, ‘¥, (ﬁ;Rg) the condition of

uniform normalization in the integration of electrons at any value
of the coordinates of nuclei must be paid:

2 S S @)
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Under these conditions, Schrodinger's equation can be
written as follows:

H Y, =E_P, (3)

h? 1 2 1 Ze?
Z(_Ai + Z_.e 1 za e—»o ‘Pe:Ee\Pe
i\ 2m 8me i;tj‘ri_rj‘ 4“801,a‘ri —Ra‘

In this expression ﬁg , this equation is entered not as a variable,

but as a parameter that affects the wave function and the value of
the crystal's energy:

E. = [¥AMdr, =ERVRY...) @

E is the energy of electrons moving in the field of nuclei that are
at rest.

The idea of a nuclear reactor is extremely superficial. In
fact, it is important to note that the cores are moving. In this case,
the Hamiltonian of the crystal can be described as follows:

2
I:IZ:Z B h
o

2M
(5) Let us call the operator included in the expression (5) the

—

A, +ﬁa+Ee(.. R ) )

.y oo

[0

nuclear part of the Hamiltonian crystal. Then we can write:

A

H=H_,+H, —E, ©6)
Let's describe the wave function of a crystal ¥ as a derivative:

‘P(...,fi,...,;...,f{a,...)z ‘P(...,fi,...;...}iq,,...)CDZ(...,RQ,...) (7)

This expression can be substituted for the Schrodinger equation
for crystals, and @, (ﬁl ,) the equation can be defined as:

W =1, + 1, -E)¥.®, =, [, ¥, +H, ¥, -E,¥,0, =E¥.o,8)

Or (3)
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Y =1,¥.®, =E¥.®, =E¥ ©)
You can write.
Someone can write it. After a certain mathematical equation

[eow.dr, =1 (10)

In the light of the fact that it is
From the above statements, it is evident that the wave
function of the crystal in the adiabatic approximation

‘P(fi,..., ;...,ﬁl,...): D, (ﬁl,...)‘Pe(fl,...; R,,..) (1

Some can be written.

A

He\Pe = Ee\Pe’
H® =E ¥, =E0,

It can be found in the equations.
In adiabatic approximation, the wave function of electrons

is determined by the instantaneous state of the nuclei (H othe

Weez limit in Weez), while the wave function of the nuclei is
determined by the mediated area of the electrons.
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SECTION 15. A SINGLE-IMPURITY

SEMICONDUCTOR

Now let's take a look at a semiconductor that is a kind of
addictive center, let's say donor-type addicts: N . 0, N .= 0

In this case, the neutrality equation is:

In general, this F'
is the third order
according to the
equation. Now the
free holes in the
valence zone are
only due to the
ionization of
specific atoms, and
the free electrons
in the conductivity
zone are due to the
ionization of
electrons from
both the wvalence
zone and the donor
ZOne.

n—(p+N,)=0. (1)

Figure 1. Thermal generation of
charge carriers in a semiconductor
with donor-type impurity

It is located in the middle of the area (Figure 1). Therefore,

p << N ; in the conditionally paid temperature interval ("low"

temperatures), the main role will be played by the overflow

centers, and p >> N ; =N ., in the conditionally paid interval

("high" temperatures), the main role will be played by the
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transitions from the valent zone to the conductivity zone. Let's

take a look at both of them separately.

a) Low temperatures. As we have already mentioned,

this p << N includes the temperature interval that satisfies
d p

the condition. In this case, we can see that (3.6.1) p N ; is not

the same as (3.6.1). (3.3.19) and (3.4.5) (3.6.1):

F
T N
kT d
Nce U= Nd - E,-F
—e " +1
2
Or
1 Ed L E4-F

—Ne" + N e T—lNdek"T =0.
2 2

If we make a change like this:

F
ekOT =X,
1 1. =
—~Ne" +Nx——N, e -x
2 2
To put it simply:
E E
Eq N Eq
X H+—ex——LeM =0
2 2N,
From here:
E, By
1 5 8N, o kT

x=—e""| -1 |1+
4
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If we take into account that this is the x > () case , we can omit

the negative sign in front of the root expression. Then we get
from (3.6.3) and (3.6.5) for the Fermi level:

-1 (6)

The following inequality can be calculated N . due to the change

in temperature at sufficiently low temperatures:

E,
3N, e >>1. (7)

c

In (3.6.6) we can subtract the units:

Lo BN, 5% N, 5| E kT N
F=kTind-e" |—te ™ b=k Tln{ |- ™ ==L+ Jp—L
N N 2 2 W
8)
Since it is calculated from the bottom of the energy conduction
zone (Ec = 0) , the energy corresponding to the level of the
adversity (the "depth of the adversity") is negative:
E, <0.
E 4 (Aé‘ d) F' And if we are to be honest with ourselves,
then we are to be honest with ourselves.
Ae, kT [ N
F=—"%+""In| -~ 9)
2 2 \2n

Ag,

From this it can be seen that 7 =0 F =— it happens

when, i.e., at absolute zero, the Fermi level passes through the
middle of the distance between the conductivity zone and the
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adjacent level. Increasing with the increase in temperature F¥' |

it approaches the bottom of the permeability zone, takes the

maximum price, and then begins to decrease, 2N .= N 4

&y .
recurring in its price /' = ———% (but here (3.6.7) conditional

must be paid, otherwise the expression (3.6.9) is not correct).
Let's find the concentration of electrons:

1
Ag; 1 Ny = Ag,
— +—In| —* 2 -
s ] (NN n
n=Ne —| e e

straight line is
given in the
form of a
straight  line
(Figure  2).
Ashgar Level

2
! Ag,
HZ(NdNCJZeZkOT (92)
2
In(nT~3'%)

»
>

Figure 2. In a semiconductor with one
type of impurity at low temperatures

In(nT="*y= £(1/T)
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The Activation
of Energy

This line can be found by (q)) the angle of inclination:
Ag, =2-kitgp. (10)
3.6.7 And we shall see that the LORD hath made a covenant with

the LORD of hosts, and he hath made a covenant with the LORD
of hosts.

8N, efl <<1. (11)

c

In order for the same concentration of additives ( /N s 1D
to be correct, relatively higher temperatures are required, and
conditional temperatures must also be met at these temperatures
N . > 8N , - In this case, if we divide the expression (3.6.6)

A
8 Nd 26y

-e""into the order above, then we will suffice the

y:

NC
first two terms:
Ae, Ae,
_2% 4 26
F=kTh Lol Mgy g :kOTln& (12)
4 N N

4 4

N
N s << N . This means that and < (as the temperature
increases I | it drops below the bottom of the conductivity zone.

To do this, let's find the concentration of electrons:

N,
£ In—

n=Ne" =Ne ™ =N, (13)
That is, the concentration does not change depending on the
temperature (all donor centers are ionized). This is called an
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oblast where the electrons of the donor centers are completely

depleted. Here it is N; = Nd

(b) High temperatures. If we continue to increase the

+ . . . .
temperature, IV , the concentration of the carriers will increase

due to the specific conductivity, being constant (N ; =N d).

We can write the equation of neutrality like this:

n=p+N,. (14)
2
n.
p = —— Considering that it is:
n
nZ
n —_ _l —_ Nd = 0 .
n
(15)
From here:
(16)

We have removed the negative solution here because it does not

have a physical meaning. Concentration of holes:

n’
1

p:—:
n

(17
N

d

And then there's the Farm Level.
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2
Fek Tl =k, Tind e | 14 1427 |2
N 2N N

:
c c d (18)
=k,Tln N, 1+ 1+4N“‘ZVVe_kTT .
2N, N;
4n’
L<<] (19)

2
d

And when we do that, we're going to have to look at it from the
perspective of the donor centers.
4n’

2

d

And when that happens, we get a non-translucent semiconductor

<<1 (19, a)

that has a special conductivity.

Thus, when there is only one type of surcharge center in
the semiconductor, the value of the Fermi level is determined by
the expression (3.6.6) or (3.6.18). Figure 3  shows the
temperature dependence of the three values of the concentration

of donor F' centers:

l1-N,,2-N,,3-N,, N, >N, >N,

We can easily get the appropriate expressions in the same
manner for the acne type of acne. In this case, for the lower
temperatures:

-1 (20)

For higher temperatures:
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2
F=-AE, —kTin] e |14 |14 (21)
‘ 2N, N’

Figure 4 shows the temperature dependence of the Fermi level in
the semiconductor for three different concentrations of absorbor-
type admixture centers:

1-N,,2-N,,3-N,, N, >N, >N, .

Figure 3. Figure 4.
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SECTION 16. THE EFFECTIVE MASS OF THE
ELECTRON

Suppose that (or P ) is an extreme k, point in

dependence
E(kO) = EO = Eextr (D
Eoln addition to the point, there must also be other extreme

points in the dependence, e.g., symmetrical - kO point. And not

only K that, but also because of the power of the Internet, it is
also the source of all things.

E(ky.ky k) =E(k, kg k)= @)

Therefore, it can be affirmed that the number of extreme points
must be determined by the elements of symmetry of the crystal
field. For example, a cubic lattice with 24 elements of symmetry
should have a total of 24 equivalent extremes.

E(E) Let's take a look at some of the most important

aspects of Taylor's case:

) 508 K-K) e el ), o

iodk" 0 dk

d/ dE Since the vector argument consists of the sum of
three quantities (with corresponding differentiation to the sum of
three quantities (kz, ky, kz), this expression / is called a tensor.

(1f=0, we get a scalar, and lif=1, we get a tensor—
vectorfrom the first rank; / =2.3,... If this is the case, then the
second, third, and so on will be used. Let's just write the first two

paragraphs: /=1, {=2:
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b

dE (8B OE OE
dk | ok, ok, ok,
(4)

d°’E [d 6E d OE d @B
dk? | ok ok, "ok ok, ok ok,
O’E  0°E 0’E
ok ok,ok, ok,ok,
O’E  0°E  O°E
Ockak, ok ok,dk,

0’E o’E  0’E
ok, ok, ok,ok, ok;

)

Mixed derivatives do not depend on the sequence of
differentials:

0’E _ 0’E
ok;ok; ok ok,
Such tensors are called symmetric tensors, and

azE/ (51(?) some boundaries are called diagonal elements. A

(6)

derivative £ of the component/ consists of three elements £ - a
ranked tensor.
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kO Let's take a look around the little one. In this case, the
first steps may suffice. As a result of the extremity of the series,

the dj _ ( series begins with the quadratic limits.
dk ¢

1d%E ( (7)

E(E):E0+2d k— k0)2+ =B+~ z

2 61( 61( (k kOl )(k kOJ)

From this it can be seen that the isoenergetic surface in the
vicinity of the extremum is described with sufficient accuracy by
a second-order surface. When the price of energy is close to the
extreme value of EO, this condition is more accurately calculated.
This is due to the fact that the first few steps are very small
compared to the first one:

HBG &) < ;jf{ k-kJ  ®

6 dic’

By selecting the coordinate axes, it is possible to bring the
second-order tensor into a diagonal shape, so that the non-
diagonal elements are converted to zeros on these axes. In the
context of these circumstances

0’E .
- = O, * 9

In this case, the equations of isoenergetic surfaces

E(k) (EO) ; izklj(ki -k )2 =const=FE (10)
i=1 i

Or
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10°E 10°E
E(k)-E, = (ky —Kox ) + = (ky —koy f +

Ty A2 2
2 oky 2 ok, (11)
2
+la—E(kZ —kOZ)2 = const,
2 ok?

Drop it into your image.

Since the sequencing is carried out with respect to the
extreme point, the signs in all derivatives are the same—: plus at
minimum and minus at maximum, so isoenergetic surfaces are
ellipsoid-shaped.

Let's look at isoenergetic surfaces in quasi-impulse space.
It’s obvious that

e LBl Lo 1EL Lo
E(P)=E(po)+2df)2(p—po) +6dp3(p_p0) +... (12)

P, =71k yAnd since it's an extreme Py point, it's just a
0 0 oPp J

matter of getting close to it.

_ 1d’E,. . v
Elp)=E, +— — +... (13)
(p)=E, 2df)z(p Po)
"We can write it down.
d’E «,
Tzzm (14)
dp

*_
Let's accept it. It is clear that K is m ! the sum of its parts.

i OE

m. = (15)
! Opop;
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. *—1 . .. . .
who is. Il‘lij — The unit of measurement coincides with the unit

of measurement of the inverse value of the mass:
-1
2
% 0°E
s = 2= | =
Opiop;
sy _d°E . .
m =— The quantity is called the inversely
dp

effective mass tensor.
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SECTIiON 17. THE ELECTRON NEUTRALITY
EQUATION.

If the Fermi level (£ ) is known, then it is easy to drill a
hole and calculate the concentration of the electron. However,
the Fermi level is highly dependent on the degree of clearance
and temperature of the semiconductor. When there is an external
coating in the semiconductor, local levels of sulfur are generated
in the prohibited area. These levels can be held by both electrons
and holes. The redistribution of loaders by energy levels is
regulated by the change in the level of the Fermi.

Typically, to determine the state of the Fermi level, they
use the condition that the crystal is neutral in terms of its electric
charge, and the equation that expresses this condition. To get this
equation, we need to take the sum of the negative charges in the
crystal equal to the sum of the positive charges. Suppose there
are both donor and acceptor-type additives in the semiconductor,
and their concentrations N are respectively and N . In the

state of equilibrium, as a result of thermal ionization, a certain
amount of electrons pass through both the suspension centers and
the principal atoms (the valence zone) to the conductivity zone.
Let's write the condition for the neutrality of the electric charge
for a single-volume crystal. To do this, we need to calculate the
number of negative and positive charges separately (Figure 1).
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Figure 1. Heat generation of freight carriers in
semiconductors with donor and acceptor-type alloys

Negative charges are electrons in the conduction zone and
the receptor centers that have captured the electron ( let's

indicate the concentration of such /N a_ centers). The sum of
them is:

(n+N))e .
Positive charges are free holes in the valence zone and donor
centers that have lost their electrons ( N ; let's indicate the
concentration of such centers). The sum of the positive loads:

(p+N,)e,

here € and € accordingly shows the charge of the electron

and the hole (8_ = —€+) . Now let's write the neutrality
condition of the electric charge:
(n+N)e +(p+N,)e =0 (1)
or
(n+N,))+(p+N,)=0. (2)
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This is called the equation of neutrality of the electric
charge of a crystal or the equation of electroneurity.
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SECTION 18. TEMPERATURE DEPENDENCE OF
FERMI LEVEL IN SPECIAL SEMICONDUCTORS

If there are no external superconducting atoms in the
semiconductor, it is called a special semiconductor. In this case
N g = N .= 0, it is. The equation (3.60) takes a very simple
picture:

n=p, (1)
In other words, the number of free electrons in the conductivity
zone is equal to the number of free holes in the valence zone
(Figure 1).
For a non-semiconductor, we take the expression (1):

dn""0

3 3
2(271771* k szekff (2w kT

—h2 e ()
From here:
2F+AE, * \5
e koT — ip
mdn
From this formula F we can find:
AE kT (m )
F=-— 2g+ 02 In| —2 | . 3)
m

dn
If m;p = m;n it does, then the Fermi level passes through

the middle of the forbidden zone and does not depend on

temperature (Figure 2). m:p #* m;n At absolute zero

temperatures, the Fermi level falls into the middle of the
forbidden zone, and as the temperature increases, it approaches
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either the conductivity (mzp > m;n) zone or the valence zone

(m:,p <m,, ) lincarly.

&

Figure 1.Temperature dependence of the Fermi heat generation
level of loaders in a proprietary semiconductor
If we refer to the concentration of loaders for a particular
semiconductor 72, , we get the expression (3.3.34):

AE,
nz:n:p:ﬁ:\/NcNVeim:
AE, AE,

N “
~482.109 Zela ]4T‘3‘e_2k°T _CThe ™
mO

u

g
3
" 2

15 mdnmdp ! -3 .
Here C=4,82-10 — | sm 1S a constant

m,

quantity for the given semiconductor. From (3.5.4)

3 AE,

5 "2k, T
nT ’=Ce ,
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And then there's the fact that this phrase is a logic:

1

3 AE
ln(nisz:InC— .= (5)

As you can

3 1
ln(niT 2) T

see, it depends on
the line (Figure
2). (3.5.5) and
Figure 2 shows
that

AE, =2kiga

In(n, 7%y = f(1/T)

2k, T

In(n, T/
A

\
\

a/\\ :

Figure 2. Dependence of

in an intrinsic
semiconductor

Thus, the dependence of the concentration of loaders on

temperatures in a special semiconductor makes it possible to
determine the width of the prohibited zone.
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SECTION 19. UNDERSTANDING OF
QUASI-PARTICLES

When we looked at the motion of the electron in the
crystal, we took the permissible values of energy in the form of
zones as a result of the periodicity of the crystal potential, i.e.,
the result of the regular arrangement of atoms over long
distances. This is commonly referred to as long-distance
regularity. However, in semiconductors, the zoned character of
energy is also observed in cases where the order is disturbed over
long distances, for example, when the semiconductor melts and
turns into a liquid (in the case of a liquid there is regularity only
over small distances), the zoned character of the energy is often
preserved. This shows that "remote order" is not a necessary
condition for the receipt of energy in the form of zones, but in
fact it is only one of the sufficient conditions that allows us to
solve an electronic problem. It seems that a sufficient conditional
constitutes the structure of the potential (close order) at close
distances, but such an approximation requires solving a multi-
object problem. We have already talked about the complexity of
the problem.

It is clear from simple physical judgments that when free
atoms combine to form crystals, the same (flaked) states of the
electrons of different atoms must form zones as a result of the
disintegration (elimination of friction).

It is possible to talk about the role of the proximity zone
in terms of the proximity of the order. This is because the atoms
are statistically distributed in the crystal, and there can be no talk
of their orderly arrangement (periodicity) over long distances.

Describing the physical properties of a solid object is
made sharply easier by incorporating the concept of some quasi-
particles. Such particles cannot exist freely outside of the
environment (in a vacuum). In fact, the electron and the hole that
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create electrical conductivity in the crystal and have a certain
effective mass and quasi-momentum are such quasi-particles.

Apart from charged quasi-particles (i.e., particles involved
in the transport of electric charge), there may also be other types
of quasi-particles in a solid body — non-charged. To explain the
possibility of the formation of such particles, let's take a look at
the mechanism of formation of an electron-hole pair in a special
semiconductor. The electron absorbs energy equal to the width
of the forbidden zone and passes into the conduction zone, thus
creating a free electron in the conduction zone and a free hole in
the valence zone, which are also involved in the electrical
conduction of the crystal. If the energy absorbed is smaller than
the width of the forbidden zone, then a special state called
excitation may occur in the crystal (excitation in English). The
existence of an exciton state was first proposed by Frankel
(1931). An exciton is such a bonded state of an electron and a
hole in which the coulomb interacts with each other that it has a
certain quasi-momentum and forward motion energy, and can
move along the entire crystal. It is possible to imagine the
formation of an exiton in a different way. When a free electron
and a free hole are formed in a particular semiconductor, a
coulomb interaction (gravitation) force occurs between them. As
a result, an "atom" will be formed - an exciton, similar to a
hydrogen atom, but here it is not a positively charged particle
proton, but a positively charged hole with a mass equal to the
mass of an electron.

The movement of the electron-hole pair in the exciton
state does not cause the formation of an electric current and does
not affect the electrical conductivity of the crystal. Therefore, the
absorption of light, which results in the formation of an exciton,
does not cause photoconductivity. The resulting exciton
undergoes a chaotic diffusion motion within the crystal, and this
state continues until one of two conditions occurs:
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1) one of the particles that form the exciton is captured by one of
the crystal disorders. At this time, the other particle is still free in
the corresponding area; (2) It recombines with the electron. In
this case, the energy absorbed during the formation of an exciton
is either released in the form of a quantum of light or converted
into the thermal energy of the crystal cage. Of course, in both
cases, the exciton is broken.

In general, the solution to the problem of electron
formation goes beyond the approach of an electron. However,
given the interaction between an electron in the conductivity
zone and a hole in the valence zone, it is possible to include
excitation excitation in the band theory (note that such an exciton
is called a Mott or Vanier exciton). If the size of such an exciton
is large enough than the crystal constant, then we can view the
interaction of the electron-hole pair with great accuracy as a
coulomb interaction of two charged particles in the dielectric
medium (where the main crystal cage plays the role of the
dielectric medium). In this case, it is necessary to take the optical
(high-frequency) dielectric constant as the dielectric constant of
the medium. Because the electron and the hole move so "inertly"
that the operator that characterizes their coulomb interaction
does not need to include the polarization associated with the
displacement of the crystal ions.

If we refer to the radius-vectors I_”; that Fp characterize
the state of the electron and the hole in the exciton, and their
effective masses 71, , and with them m, , we can write the

Schrdédinger equation, which describes the state of the exciton,

as follows:
2 2 2
_h —An — h —Ap — ¢ w(F 7 )=Ey(F,F) (2.19.1)
Zm” 2mp €, ’_;n Fp ! !




Here, the first and second limits on the left side of the equation
describe the kinetic energy of the electron and the hole (A and
A, the Laplace operator taken according to the coordinates of
the electron and the hole, respectively), and the third limit
describes the interaction energy of the electron-hole pair.

This system is the radius vector of the center of inertia of
the electron-hole pair:

Pl m'7 +m, 7, (2.19.2)
m,+m,
And it can be described by the radius-vector, p which
determines the position of the electron in relation to the hole:
p, =T, —F. (2.19.3)

We can show that when we express the newly entered variables
(2.19.1), the equation looks like this:

. R e’ - -
_ AR — AD — R,p)=Ew(R,p)’ (2.19.4)
[ M on 0 . }//( p)=Ey(R,p)

Here M = m: + m; , m:p is the mass of the electron-hole pair:

= (2.19.5)
Tom,+m,
(2.19.4) The equation is solved by separating the variables:
W(Raﬁ):l/jl(R)l//z(/_j) (2.19.6)
2.19.6 (2.19.4) and divide it into two parts y/(R, p) :
h’ - h’ e’
- ’7~'A§W1(R)_ ~ 7*A,3l//2(15)+7(//2(/3) =E
2M y ,(R) w,(p)| 2m,, 0P
.(2.19.7)
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The first limit of the left side depends on only R, and the second
limit depends only pon , but the sum of them is E equal to a
fixed quantity. In this case, each limit must be equal to a constant

quantity separately ( Rand p not dependent on each other):

—%AE%(E)zT‘*%(R), (2.19.8)
n’ e’

—2 A —— v, (P)=E%y,(p) (2.19.9)
mnp On

It’s obvious that:
E=T* +E* (2.19.10)
The equation (2.19.8) is reminiscent of Schrodinger's equation

for a free electron and M :m: +m; describes the free

movement (translation) of a mass particle (exciton) across the
entire crystal. The solution to this equation is in the form of a

plane wave, energy:
2

h2 l;ek
ek __

B 2(m + mp)

(2.19.11)

It is expressed by the formula. Here, the wave vector of the
exciton is defined as follows:

2 * + *
o N2 M) e (2.19.12)
h
Thus, the equation (2.19.8) describes the motion of the

center of inertia of the exciton. The kinetic energy that performs

this motion is 7. Another equation — (2.19.9) describes the
internal (hydrogen-like) motion of the exciton relative to the
center of inertia. In this case, the specific values of energy are
determined as in the case of a hydrogen atom. In the case of a
hydrogen atom, however, the energy of an electron that has
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moved away from its atom to an infinite distance is first taken as
a starting point. In an exciton, it is necessary to choose the
beginning n=co in such a way that and p=o0 when it is
E* = E + E, obtained (7 - the prime quantum number, £ and
E_the values of the energy corresponding to the maximum of

the valence zone and the minimum of the conductivity zone). In
this case, let's take a look at the Exciton:

EY“—F + 1 me pE _ﬁ m, ~i(eV)’ (2.19.13)
CT T T o e

() n On 0

If we calculate the maximum of the valence zone of energy
(E,=0), then we get the main state of the exciton (n=1):

B —ap, 135, ( ]( - (2.19.14)

Oon 0

From the expressions (2.19.13) and (2.19.14), it is evident that
the energy levels of the exciton are located in the vicinity of the
conduction zone in the forbidden zone.

The value of the radii of the boron orbits of the exciton is
determined by the following formula:

232 °
a’ :%gw :0,53,12( mf jgw(A). (2.19.15)

2
em
np np

The lower the effective mass of the loaders and the higher
the value of the dielectric constant (&, ) , the less energy of the

exciton and the greater the radius of the boron orbit. In practice,
it is more difficult to observe excites with large radiations. This
is because the energy levels of such excites are very close to the
conductivity zone (almost fused with it). An exciton with a large
radius (relative to the parameter of the crystal cage) is called a
Mott exciton.

The total energy of the exciton:
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E, =T +E* (2.19.16)

Each energy level must be converted into a zone with a
sufficiently wide width. However, in experiments, when light is
absorbed by an exciton, its energy levels are observed in the
form of lines with very narrow energy levels. This, in turn, is
related to the selection of the wave vector of the exciton.

Another type of exciton is an exciton with a small radius
or a strong bond. These are commonly referred to as Frankel's
excitement. Such excites can be described by the convergence of
a strongly bonded electron. In this case, the expression for the
specific values of the energy of the exciton is the same as the
expression for a strongly bonded electron. Thus, the energy
spectrum of the exciton is made up of separate zones.

A further excited state in crystals dominating the ion bond
can be described by means of a quasi-particle. In such crystals,
the conductive electron (and the ionized adsorption atom)
polarizes its immediate surroundings through its electric field,
and the greater the dielectric constant of this polarizing medium,
the stronger it is. As a result of polarization, the energy of the
electron decreases, i.e., a potential hole is formed around the
electron. Thus, a state arises that is self-connected and can move
along the entire crystal. Self-bonding consists in the fact that the
localized electron polarizes the crystal, while the polarization of
the crystal, in turn, helps to maintain the localized state of the
electron. When the electron moves, it also "follows" the
polarization of the crystal. Thus, the electron polarizes the
regions that have just come across on its path, and the previously
polarized regions return to their previous state as the electron
moves away from it. Such free charges, which move in the
environment in which they are polarized, were first studied by
S.I. Pekar (in 1946). He called it the polyaron, which is formed
in the crystal. Therefore, when we say polyaron, it is necessary
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to understand the electron and the region that it polarizes in the
crystal around its vicinity.

It should be noted that the formation of polarion is not
caused by the complete polarization of the crystal, but only by
the inertia part of the crystal, which is associated with the
displacement of heavy ions 10" sqn . The other part of the
electron that is associated with the polarization of the electron
layers (orbit) ( 107" san which has a relaxation period) moves
inertially along with the free electron, and thus enters the self-
bound periodic potential, which is directly affected by the crystal
on the electron.

The polaron state forms an entire zone in the crystal, and
the polaron moves in this zone. The movement of the polar in
this zone is the same as the laws that the electron follows during
its movement in the conductive zone. However, there is only one
condition that must be met, so that the polarization of the
medium does not lag behind the displacement of the electron (not
too inert).

If the energy of interaction with the hole that the electron
itself has "drilled" is greater than the thermal energy, then the
communication on the polaron is strong enough, and it is more
energetically favorable to be in the state of polaron, which is
located in the forbidden zone below it, than to be in the zone of
conduction to the electron. If we refer to the number of electrons

in the conductivity zone 72, and the number of electrons in the

polaron state 72, then the polaron is &, the energy of the

polaron.

— e (2.19.17)
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It should be noted that the polaron zone is located below
the conductivity zone and its width is smaller than the width of
the conduction zone; as well as the effective mass of the electron
(polarion) carrying the "fur" with it in the corresponding zone
may be quite large compared to the electron of the conduction
zone. Accordingly, the temperature dependence of the polaron
on is completely different from that of an electron in nature. And
the Prophet (peace and blessings of Allaah be upon him) said: "O
Messenger of Allah, I am the Messenger of Allah, To illustrate
this, let's imagine a polaron (polyaron packet) localized near any
node point in the crystal cage. This type of situation that does not
have translational symmetry cannot be sustainable. It will either
travel through a tunnel through the entire crystal like an electron
in the conduction zone (but with a greater effective mass) (the
wave packet will "propagate” across the entire crystal), or it will
fall into the hole created by the heat dances of the crystal cage in
its neighborhood without expending any energy. With a certain
effective "sedentary" duration 7, the probability of the transition

of the described first state W/, does not depend on the
temperature at the first approach. The 7, probability of the

second case, which is characterized by duration, W, will depend

exponentially on the temperature, since the probability of the
formation of an "empty" hole increases J¥, exponentially

depending on the temperature:

W, ~e (2.19.18)
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Here 8; is the energy of the formation of the empty pit. The

outcome of the poll will depend on which of these two cases
prevails. It is less likely that an "empty" hole will form due to
heat energy at sufficiently low temperatures. That's why

W, >>W, .t <<t,..Thus, after arandomly localized polar

period, it 7, will again become a zone electron, and the heat

dances inhibit the movement of the zone electron. In this case,
with an increase in temperature, the validity of the polar vortex
decreases. At high temperatures, on the contrary, empty holes
are more likely to form. Therefore, W, >> W, and T, <<7,-As

the intensity of the heat dances increases, empty holes will form
very often, and the polaron will "jump" from one of them to the
other. Since it is already available IV, << WV, , the displacement

of polar (either as a result of diffusion or by the influence of the
field) will be mainly due to the second mechanism. This is called
the jump (or jumping) mechanism. In this case, the validity of
polyarone will increase exponentially with the increase in
temperature:

’
n

u~e ' (2.19.19)

In its own way, this expression is similar to the

&

dependence of the flow of ionism on temperature. This is why
the mechanism that we have described above is called the leap
mechanism. It should also be noted that the exponential
dependence of polarity on temperature is related to the
probability of the formation of a sufficiently deep hole in the
neighborhood, which itself E}: is not the depth of the hole, but

the energy of its formation.
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Localized polyarone can remain "stuck" near any defect
(defect) of the crystal cage. This is exactly the same as an
electron caught by a defect.

Another type of quasi-particle is uncharged particles,
which describe waves that correspond to the propagation of the
heat dances of the crystal cage. As a result of the propagation of
the heat dances of atoms, there are a large number of stationary
waves in the crystal, which differ from each other in
wavelengths. Just as in the corpuscular theory of light it is
possible to replace every wavelength of light with a particle of a
certain energy with a particle of a certain energy, so in the theory
of solids, it is possible to replace each static wave of heat dances
with a certain wavelength with a particle of corresponding
energy. This particle is called a phonograph. Thus, the static
waves created by the heat dances in the crystal cage are replaced
by phonon gas. This makes it easier to describe a number of
properties of a crystal cage.
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SECTION 20. THE FUNCTION OF DISTRIBUTING
THE DISTANCE AND DURATION OF THE FREE
ESCAPE

The average length of the jt freeway and the duration of
the free run varies from zero to infinity over a wide range for
different loaders. Therefore, it is necessary to determine the
probability of finding a free escape. For this purpose, let's
assume that,

1) The probability of an electron being subjected to a
collision at a given DT time interval is directly proportional to
the DT interval,

2) The probability of a collision in a single time is a
constant quantity with respect to time;

In order to determine the distribution function of this
purpose\free escape path, let's express the probability of a
particle moving without being subjected to collision in the time
interval t, t + dt as follows:

do =do(dt) (13.1)
where wmthe quantity (t) is (t, t+1), wand (t+dt) t+dt, t+dt+1 is
the probability of free motion of the dread in the time interval
t+dt+1. @ The value (t+dt) can be expressed as follows: On the
one hand,

o(t+dt)= w(t)+cii—?dt (13.2)

On the other hand, the free tact of motion during the period t+dt
can be expressed as the product of two motions according to
probability theory. For example, event C can be expressed as the
product of two events; And the Prophet (peace and blessings
of Allaah be upon him) said: "O Messenger of Allah, I am the
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Messenger of Allah (peace and blessings of Allah be upon him)
and I am the Messenger of Allah (peace and blessings of Allah
be upon him).

C=4B (1.3.3)
The probability of the product of two events is equal to the
probability of the conditional probability of the other event:

w(C):a)(A)w(ij:w(B)w[;j (13.4)

Since event A does not depend on event B, @ (A/B) = @ (We
can write A. Event B does not depend on event A, so it can be
written:

a(t+dt)=o(t)do(dt) (1.3.5)
We can also express the probability of free movement during the

period under consideration by the probability of scattering during
that period. Since the probability of scattering (collision) in a unit

time adtis 1, and the probability of free movement is 1, adt we
can write:

da(dt)=1-adt (13.6)

Let's take a look at the comparison of the above statements:

w(t+dt)=w(t)+i;tvdtzw(t)[l—adt 7 =a(t)- ot )adt

(1.3.7)
This is @ for the function (t).
dw

— =—wa (1.3.8)
dt

This leads to the differential equation.
Let's take a look at the average price of a free spin <t> as
follows:
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o0 o0 1

<t>= [tw(t)dt = [tae ' dit =~

0 0 a
(1.3.13)
If we substitute the average running time 7 with <t>=7, then
we get according to (1.2.13) that the probability of a collision
in a unit time is equal to the inverse value of the average free

running time:

a=—=r1 (1.3.14)

In this case, the distribution function normalized to unity
is
t
1 RS
a(t)==e 7 (1.3.15)
T

In a similar way /, we can find the distribution function
w (x ) of the free escape route:

X

@(x)= %e_f (1.3.16)

The assigned distribution functions are calculated for the
most common cases. Apply them to the motion of an electron in

)
an electric field. Moving rapidly in the electron ﬁelde— , during
m

the T-free run.

D(t):e—tE (1.3.17)
m

It gains velocity, and it travels the distance x in time.

103



E R -
x:e—t2 K x:iE (1.3.18)
2m 2m

In this case, the average velocity of the drift is

G_CTE (1319

T m

0 o0 _1
5y = [B(0(n = [ie =% T p
0 m

0
In contrast to the middle field, the
t

= 0 2
1= [5(o(di=E [ * U= F (30
0 2m T m

They can. Here's a breakdown of the speed and speed of the
drive:

D, =Y E = JE, (13.21)
m
u=5t (13.22)
m

From all of this, it can be concluded that the 7 average running
time is or the time between two collisions. It is determined not
by the speed of the drift motion, but by the length of the free-
running path and the full velocity of the particle. The full velocity
depends on the energy of the particle, and for this reason, the
free running time is a function of the energy of the particle.
If the free escape route itself is also dependent on energy, this
dependence becomes even more complicated.
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SECTION 21. INVERTED CRYSTAL CAGE

The arrangement of atoms within the crystal lattice has a
certain periodicity. In other words, a crystal is a vector in its

entirety Ein

a, =nd, +n,d, + nyd, (1)
And if we continue to do so, it will continue to fall on its own.
Here, c_fl ,c_iz ,53 , the numerical value is equal to the
corresponding languages of the elementary crystal core, and the

vectors oriented in their positive direction 7,,H,,M; are

integers (positive and negative). a; ( =1,2 3) Vectors are

called translational or base vectors.
Within the crystal, such as electrostatic potential, electron
cloud density, etc., have three-dimensional periodicity. Since the

points within the crystal ¥ and 7 + Ein characterized by its

vectors are equivalent, the following condition is met for the
electrostatic potential:

v(iF)=v(F+a,)n=123... @)
To simplify the calculation, let's ﬁi (i = 1,2,3) use the vectors

and select three new vectors like this:
Z; _ [(_i253] . B _ [5351] [alaz] (3)

1= (=1==N"2"7=[= = ’b3
(al [a2a3 ]) (al [a2a3 ]) (al [a2a3 ])
Here the expression in the denominator of all three vectors is the
mixed product of the base vectors. It is known that this product

a; (i = 1,2,3) is equal to the volume of the parallelpiped (i.e., the

elementary core) built on these vectors. {2 o Let's take a look at
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it:
Q, =(aa,a, ) )
(3) It can be seen from the expression (3) that bi (i = 1,2,3) the

degree of dimension of the vectors is equal to the inverse of the
dimension of length. For example, if we are going to use the

Cubic Synagogue a; =a, =dy; =a bl =b2 =b3 =b, we

1 1
b =— will take it. @ =1 If we could get the SMS b =1— |
a sm

it would be fine.

If we l_); (i = 1,2,3) build parallelpipes on their vectors

and arrange these parallelpipes side by side in all three directions,
we will still get a three-dimensional lattice, just like in a crystal
lattice. This type of three-dimensional grid is called an inverted

crystal lattice. They b, ,b,,b; are base (or translation) vectors

in an inverse crystal lattice. In a Ez(l = l,2,3)—paralle1pipe

built on vectors, we will call it the elementary core of an inverted
crystal lattice. A vector that connects any two node points of an
inverted crystal lattice is called an inverse crystal lattice vector.
In general, we can express this vector as follows:

b, =gb + g,b, + 83D, )
Here g, g, are the g5 exact numbers.

Here are @, the vectors of the straight crystal b o cage.

The volume of the elemental core of an inverted crystal
lattice is equal to the inverse value of the volume of the elemental
core of a flat crystal lattice:
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(b1 [b,;]) = - (6)
QO
In crystallography, the idea of an inverse crystal lattice
arose from the problem of dividing any function with the
periodicity of a flat crystal lattice into the Fourier order.
Such an approach facilitates the study of the motion of an
electron in a solid body (in a periodic field) on the basis of
quantum mechanics.
The inverse crystal lattice vector has the following two
important properties.
Theorem 1.
Ifgl:g2:g3=h:k:
1, then the

b, =gb + g,b, + g3b;
inverse lattice vector
is perpendicular to
the plane of the flat
lattice (HKL) (Figure
1).
Figurel.

Theorem 2. The Ehkl — length of the inverse lattice

vector is equal to the inverse value of the distance between
two adjacent planes in a family of parallel planes
corresponding (HKL) in a straight lattice.
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SECTION 22. PERIODIC FIELD OF THE
CRYSTAL LATTICE. BLOX WAVE

The Schrodinger equation for a single electron is
expressed as follows:

[(—h* /2m)A+ UH)¥(F) = E¥(F),
(1
Here, U(f) = Ui (i‘; ) = Q(i‘; ) + Vi (i‘;) the area of the
electron in the crystal lattice and the rest of the energy interacting

with the electrons depend on the properties of the lattice. One of
the most important features of the crystal cage is its periodicity.

In this T way, as far as the translation vector goes, a point that
is  identical to the initial point is  obtained:

n= n151 + nzaz + n353, 51,52,53 it is the base of the
cage. Of course, there is a need for a periodic table of energy.
U(F +1) = U(F) %)
It has to be in shape.
In the case of an operator, this condition is

T@)U(F) = U + 1) 3)
It can be written here, but here T(ﬁ) it is called the translation
operator. 2) It is evident from the equation that T and N + T its
points are physical equivalent. So, if we write in Schrédinger's
equation T instead T+1n , the wave T+1n function
corresponding to his argument W(T) differs from the wave
function Cn by the constant multiplication:

Y(r+n)=C,¥(r)

In other words, the U(T) modulus of the wave function

remains unchanged due to the periodicity of the potential field
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“P(f)‘ in the shift as much as the translation vector , but only
its phase changes.
\P(f + ﬁ) The normalization condition for the wave

function is as follows:

[PE+R)"(F +i)dr=|C,[" [PEP F)dr @)

In accordance with the terms of normalization:

[w@W (Ddr=1, ()

—00

2
It will be taken from him ‘Cn‘ =1 . This means that Cn is

equal to either a unit or an imaginary exponent. CNN is
considered to be an —imaginary exponent. Taking into account
that the top of the exponent is an unnamed number and 1 — in is
a unit of length, it is assumed that one-third is an additional
multiplication with a unit of measurement ™. This quantity is
called a wave vector and K is denoted by it. The modulus of this
quantity is called the wave number, and its physical meaning is
7 the waves that are located in 2 parts:

~ 2m
K== (©)
A
So,
C, =¢"t (7)
The effect of the periodic field of the crystal lattice on the wave

function of the free electron mathematically appears as an
additional multiplication in front of this function:

P(F +1i) = P (F) ®)
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This condition is called the translation property of the wave
function of the electron in the crystal . This is in the form of an
operator.

T@)W(F) = MY (T) )
who is written. In this case \P(f) , the function of the broadcast

kT .
operator is e™" its own value. As we know from quantum

mechanics, the Hamiltonian H and the translation operator

command T(f) each other, which means that they have a

common system of wave functions. It follows from this that
during the movement of the electron in the crystal, the wave
function of Hamiltonian satisfies the translation condition, and

the wave function K depends on the wave vector: P = Y(k)

. Hamiltonian's specific values K will dependon E = E(E) the

energy and wave vector of the system. This statement is called
the law of dispersion of the energy of the electron in the crystal.

E(T) And the \PE (T) search for their dependencies is the

main problem of the zone theory of solid-state physics.

Let's take a look at the solution of Schrédinger's equation
for the motion of an electron in the periodic field of the crystal.
For this purpose, let's multiply both sides of equation (8):
e-il?(ﬂﬁ)

e—lk(r+n)\P(i; n ﬁ) _ e—lkr—lkn+1knl{;(i:) _ e—lkr\P(f)
e V()= @. (7) If we accept this expression, it would
look like the following:
—ik (F+77) o =N —ikE =\ —
e Yk +n)y=e"¥(r)=p.(r)
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And so it ®; (F)—u(?) has the same periodicity as the
potential field:

@ (r+n)=p.(r) (10)
Then the wave function \PE (f) , which is the solution of

Schradinger's equation for the motion of an electron in a crystal
A EAG (11)

It can be in shape.
Thus, using the condition of the periodicity of the potential
field of the crystal, we determined the shape of the wave function
of the electron, without solving the Schrodinger equation. (11) It

is derived from the statement that the solution of Schrodinger's
equation for an ideal crystal is a plane wave modulated by

amplitude (emk with the periodicity of the crystal lattice (11).
This solution is called the Blox wave or the Blox function. From
the expression of the blox wave, it appears that it does not depend
onn. emk We think of a plane wave as a function of a variable

amplitude wave modulated in a crystal lattice tact @, (77 ) . Since

it 1s different for different wave vectors (012 (I7 ) s (D]; (I_’" ) the

markup is accepted.
When we compare the Bloch wave with the de Broyle

wave \PE (f) = Aelkr , it has a more visual physical meaning.

If the electron changes its position from free space to crystal,
then, of course, the wave function of the electron will be
modulated by the constant period of the crystal lattice according
to the expression (10) under the influence of the periodic field of
the crystal.
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SECTION 23. THE RELATIONSHIP BETWEEN
VELOCITY AND QUASI-IMPULSE

The acceleration operator V is determined by Poisson's
quantum brackets:

<l>

fl’; [H*] l;(rH H”) )

This is %the coordinate operator, H and the Hamilton operator
is the Hamilton operator. % and I:I to calculate their operators,
it 12 is more convenient to move to E or -descriptions, so that all
operators E are expressed in the form of certain operations on
functions that depend on the operators. I:I The Hamilton

operator, K or in the descriptions of E, is either the

multiplication operator, or simply the energy E(K).

A

a(k)=E(F) @
In order to define the T operator (K ) here, we can use the
condition \f (f) that the function T (K)is closely related to
Wy (f) the function of the operator, which is a special function:

(K py )=, () ®

Here T is the value of the coordinate operator, v, (k) and its k

specific function is given in the description.
It is known from quantum mechanics that the special
functions of two operators in a mutual description are in a simple

relationship: L The function of the operator in the M Diagram
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VL (M)‘
M)y (M)=Ly, (M) “)

L
M This \|!M(L) is the function of the operator in the

description of L.

M(L)yy (L)=Myy (L) )
And if they do, then they will have
yi(M)=yy(L) (©)

They can. In this E case, f(E) the function of the operator is
the function of the operator.
R TSN ) B
v E)=vi(F)=e ¥l ) g

It can be written that from now on, we can easily find the picture

—

of the operator f(k) based on the equations corresponding to

special functions and special values:

F(k)y, (k)=7y, k) (8)

Flk Wy (7)=rw (7) ©)

The implication of these relationships is that f(k) it is

Or

*
necessary to choose the form of the operator in such Wk(r) a
way that the product of that function T is obtained as a result of

L. . . . * 0\ 1. .
its influence on its function. This (2% (r) Kk has to be done in

terms of the function of time.

d

— = VELet's take a look at the function of the operator
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* _ilicr) = kg —ilkr ® o,
Vi (=i o ()| =i (7)+ N i ()= 1)
=i () v T )]

Or
ook, . . || ox o\ afr -
Vl//];(l’)E Vi —\iViing; ];(r)s r(k)//lg(r), (11
So,
tk)=iv_ -i(V. me!) (12)
The operator is given in the form of a sum consisting of the
product of any function that 12 is differentiated by the number of
waves (or quasi-impulse) and E (or T depends on). -

i(ﬁﬁ In (p;) Instead of a limitVE(pz, the function Py can

be divided by its functions and Q any operator can be included.

U(f)When =sonst, the second limit is converted to zero, and

f(k) the operator P becomes the usual coordinate operator in

the -description, so that in this case the quasi-impulse and the
momentum are identical. Now the expression of the velocity

operator K in the -description

o0)- L) - ) L) o
It can be written in the form of a multlpllcatlon operator for
the derivative of energy by quasi-impulse:
S(E) ! ﬂlﬁ) dE 6(}3) 0. (14)
nodk  dP

This relationship is similar to the expression of the
wavepacket for the group velocity:
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. dE
UV, ==
T dp

E(k)The average velocity of an electron in an energetic

(15)

state (but \V;(f) not (f) with a wave function) has a

completely definite value, and it depends on this case.
. _ ldE dE

<V >=V=——Fm=—%

hdk P

Some of them are (<> here).

(16)

Thus, in a very small energy interval, the average value
of the velocity of an electron in certain energetic states is
determined as the derivative of the energy relative to the quasi-
impulse. In the case of the extreme, the average velocity in the
quantum mechanical sense is equal to zero (after that, we will
discard the words "average velocity in the quantum mechanical
sense").

If we look at the proximity of the extreme points, the
energy in this interval is a quadratic function of the quasi-
impulse:

E-E, = 1 (13_130)2:123:(Pi_Poi)(Pj_Poj) (17)

Speed
OE 3PP,
v=—=y-21—72, (18)
op, i3 my
Or in the form of a vector.
L1 (5 s
b=—|(P-B) 27.19)
m %

In other words, in general, the velocity is equal to the scalar
product of the quasi-impulse to the inversely effective mass
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tensor. If the tensor m ™' is diagonal in shape,

*—1 -1
In this case, the expression (18) is simple:
P.-P.
v, = -1t o (21)
m.

1
Since velocity is an energy gradient in quasi-impulse space, it is

—

P - 130 directed according to the normal of the surface at all

points with a radius-vector on isoenergetic surfaces.

Since the radius-vector and the normal surface are not
collinear on ellipsoidal isoenergetic surfaces, the directions of
velocity and quasiimpulse do not coincide. The collinearity
condition for such surfaces will be paid only along the axes of
the ellipsoids (Fig. 1), in this case

P, =P, =2m,(E-E,) (22)
Sao
_J2(E-E,
v, = T (23)
We get it.

Thus, at the same value of energy, the velocity along
the axes of the ellipsoid is inversely proportional to the
square root of the corresponding component of the effective

mass. Ellipsoids
a; =,¢2mi(E—E0) (24)

To get the speed of the arrows

_ ai 1&2‘E-E05 (25)

i M Jm;

We get their expressions. It is evident that the more the ellipsoids
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are stretched, the smaller the velocity in that direction. If we
build a family of isoenergetic energy levels, this becomes more
noticeable (Fig. 2). The smaller the effective mass, the more
dense the isoenergetic surfaces are located in this direction, and
accordingly, the velocity along that axis is greater.

P,»

P
>
M *>0 v /3 M*<0
4 >ﬁ< BN %
RIS EA RN A
a) 0) )
Fiigure 1 Directions of the normal radius-vector and

isoenergetic surface:
a- spherical isoenergetic surface, b- ellipsoidal isoenergetic
surface;
c- Spherical isoenergetic surface, m*<0.

It is important to note an important moment in connection
with the sign of effective mass. For simplicity's sake, let's assume

that the effective mass is a scalar quantity. In this case U , and
(13 - 130 ) the vectors are colliniary, but their direction depends
on the shape of the extreme. For the minimum, m*>0 and U its
velocity (13 - 130 ) coincide with the direction. For the maximum
energy, m*<0 is in this case, in which case U the copy vector

is (13 - 1_50) directed opposite to the quasi-impulse vector (Fig.
Ic).
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Sugar. 2. The relationship between fast effective mass and the
density of isoenergetic surfaces
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SECTION 24. ZONAL STRUCTURE OF SOME
SEMICONDUCTORS

Calculating the quantitative structure of any substance is
associated with certain difficulties. The problem with this
approach is that there is no definitive analysis of the potential of
the crystal cage. Therefore, all such calculations usually involve
physical parameters that can only be computed empirically in the
basic formulas. Such parameters include, for example, the width
of the prohibited zone, the value of the effective mass, etc.

For a crystal, an electron problem can be solved by quasi-
free and quasi-closed electron convergences with two types of
approximation. Another method is the orthogonalized plane
wave method, which consists of a convenient combination of
these. Here, during the movement of the electron in the crystal,
the wave function is distinguished as a combination of plane
waves, from which the wave functions of the inner electrons for
the atom are derived. The wave functions of the internal electrons
themselves are selected as a combination of the Blox function,
which is in the approximation of a strongly bonded electron.
Thus, the wave function of the electron in the crystal behaves as
a plane wave in the interatomic space, and at the node points
(around the atoms) as an atomic wave function. In this case,
however, there are some challenges to solve. For example, when
this method is applied to silicon and germanium crystals, it is
necessary to solve an equation with a formula of 146 to obtain
the expression of energy at the arbitrary point of the Brillyuen
zone. In this case, the problem is solved by the application of
group theory, and although it is simplified enough for points with
load-symmetry, the equation of 16 machullui is still obtained,
which can only be solved by numerical calculations.

Let's take a look at some of the more common types of
semiconductor substances.
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(a) Silicon and germanium crystals. As can be seen from
the structure of the electron layers (2), the last, partially charged
layer in these substances p is the layer, where two electrons are

located with spins parallel to each other, i.e., the main state is a
triplet. The zone structure of silicon and germanium has been
calculated by German and others for a number of points in the
Brillyuen zone that have high symmetry by the orthogonalized
plane wave method. For other points, the prices of energy

[£ (/; )] are obtained by interpolation.

The theoretical calculations were compared with the
results obtained in practice, checked, and a number of
adjustments were made to them. Both substances p are

involved in the formation of conductivity and valence zones.
Therefore, p it is necessary to use wave functions that

correspond to the Blox function of the spin convergence (which
has triple friction if spin is not taken into account) when
compiling the Blox function.

As a result of the interaction, friction disappears, and each
of the two zones (valence and conductivity zones) consists of
three bands. In the meantime, the two sides are partly divided
into two zones.

Figures la and 1b show the dependence of energy on the
wave vector in the directions [111] and [100] for silicon and
germanium. This attitude varies in different directions. In the
conductivity zone (for both substances), one of the branches of
energy is located much lower than the other two. The state of the
lowest minimum (absolute minimum) of this branch determines
the bottom of the permeability zone.

In silicon, it is in the absolute minimum direction [100]
(within the Brillyuen zone). There are 6 such minimum (since
there are 6 equivalent directions).
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a) b)
Figure 1. (Cl) Structure of the energy zones (b) of silicon and

germanium
In germanium it is in the direction of the absolute
minimum [111] (at the end of the Brillyuen zone), so the number
of equivalent minimums is 8. The isoenergetic surfaces near the
absolute minimums are in the form of a rotational ellipsoid. The
axis of rotation itself was the great axis of rotation, coinciding

—

with the direction for silicon[100] and for germanium [111]. k
This is how the energy dependence around these minimums is as
follows:

nl(k, —k,)" +(k, —k,)] . n(k,—k,)’ (1)

E(k)=E(k,) + o

1 ij

It m =m, #m,is called "m, =m, = m, transverse" and
m, = m, "longitudinal" effective mass, and their numerical
values are determined in experiment by means of cyclotron

resonance. For silicon m, = 0,1 9m0, m, = 0,981’”0 (m,

which is the mass of a free electron): 1, =9,1 . 10_28q
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m
L The ratio determines the anisotropic properties of
m, =35,16

isoenergetic surfaces. The Ratio of Arrows:

M 2207,
m,
Its minimum points are located within the Brillyuen zone, near
its border. The shape of the isoenergetic surfaces near the
minimum points for the conductivity zone of silicon is shown in
Figure 2.

For Germanium:

m,=m,=m, =0822m, ,m, =m, =1,58m,

m m m
S =To193; T—44.
m,m, m,
a) b)
Figure 2 Figure 3
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Cross-section of silicon and germanium with (a) the plane of

isoenergetic surfaces (001) in the isoenergetic conductive zone

in the valence zone (b) of silicon and germanium

The shape of isoenergetic surfaces near the minimums in
the conductivity zone for Germanium is shown in Figure 3. Half
of each ellipsoid remains in the first Brillyuen zone, as its
minimum points fall within the boundary of the Brillyuen zone.
In other words, there are 4 complete ellipsoids, i.e., there are 4
complete ellipsoids in the conductivity zone, not 8.

The maximum of the valence zone of silicon and
germanium is located at the central point of the Brillyuen zone

for all three branches of energy k =0 . Here the two zones
overlap with each other, i.e., there is a double rotation, if the spin
rotation is not taken into account, and the third band is separated
from the other two band as a result of the interaction of the spin
of the electron and the magnetic field corresponding to its orbital
motion (spin-orbital interaction). The cost of fission as a result
of the spin-orbital interaction is 0.035 eV for silicon and 0.28 eV
for germanium.

The dependence of energy on the wave vector is more

complex than the expression of the k =( approximate
circumference (1) of its maximum point for the first two
branches, and is determined by the following formula:

E,, ()= E©0) - 2’;

4k + [BK + C kK + K + kK0 2)

0

Here m - the mass of the free electron A,B,C - is an

immeasurable constant. For silicon
A=41%£0,2; B=1,6%£0,2; C=33%£0,5 , for
germanium:

A=13,0x£0,2; B=89+0,];
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C =10,3i0,2 In this case, isoenergetic surfaces are not
ellipsoids, but deformed ("shrunk") spheres (see Figure 3).
Therefore, although itis kx R ky R kz unisex dependent on energy

(2), the nature of this dependence is such that it does not allow

the use of the effective mass tensor. If kK we use a spherical
coordinate system that coincides with the polar axis in space,

then we can write the expression (2.18.2) as follows: ];Z

3)

'k’
2m

E, (k)=E(0)— [A +./B> + C’sin’ O(sin’ @ - cos’ ¢ -sin’ 6 + cos’ 9)]' (

0

Let's take a look at the average price of all the variables in the
variables:

hj'sinz O(sin’ @ - cos’ ¢ -sin’ @ + cos’ O)sin@dOdp =

D=y

L

4
1|%(% 7 2z

= J‘Usinjﬁdﬁlsinzgocoszgod(p+J‘sin"6’coszt9d¢9_[d¢}:

7T o\ 7 :

R 4l+8l]_i

4rl 15 15] 5

“4)

It includes:

EI’Z(E):E(O)—Z;{AL/BZ +g} (5)

And We have brought them to the surface of the earth. In this
case, we will take the following scalar quantity for the effective
mass of the holes:

= m, ©)

V4 2
Ai1/82+i

In other words, each energy branch has its own characteristic
scalar effective mass:
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" m . * m
m = LI A S L )
2 C 2 C
A—W/B +? A+.|B +?

As shown in the (7) formula m;p > m;p. Therefore, holes in

the zone that correspond to a large effective mass are called
heavy holes, and holes in a zone that corresponds to a small
effective mass are called light holes. For example, if we
substitute the values of the corresponding parameters for silicon
into (7):

m,, =0,52m,,

m, =0,16m

2p 0’
m,, /m,, =33.

Values derived from the experience:

*

mlp _ * _ * _
=31, m,=0,49m,, m, =0,16m,.

*

m,,

Here are the results of the experiment for Germanium:

*

m
m,, =0,34m,, m,, =0,04m,, —==~38.
2p
For the third branch of the valence zone, the dependence of
energy k on is quadratic:

2
E (k)=-E , ~ 2—Ak2, ®)
0

where Eso the value of -spin-orbital fission is 0.035 eV for

silicon and 0.28 eV for germanium. (8) It can be seen that the
effective mass for the third arm is the scalar quantity:
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*
0 - . .
m3p =—, for silicon m, =0,24m, , for germanium
p

*

m

, =0,077m,. Obviously, the isoenergetic surfaces for this

branch are spherical in shape.
(b) Intermetallic compounds. Substances formed from

the combination of group III and V elements (A”]B g type
compounds) (called intermetallic = compounds) have
semiconductor properties. These are the types of units that
belong to this class: GaAs, InSb, GaP, GaSh and so on.

The theoretical calculation of the zonal structure of
intermetallic compounds is carried out in a comparative manner
with the zonal structure of the elements of the fourth group. This

is due to the fact that A™ B" the type of compounds
crystallizes (ZnS ) in the crystal structure of the zinc sulfide

/ZnS .The crystal structure differs from that of diamonds in that

only A atoms and B types alternate with each other . The
result is that the periodic area of the crystal cage of intermetallic
compounds does not have an inversion center, i.e.

U (77 ) zU (—77 ) To solve the problem, the potential of the

corresponding group IV element, whose zone structure is known,
is used when compiling the periodic potential of the crystal

lattice of the intermetallic compound. A" B” The potential of
the combination is taken as the sum of any excitatory
antisymmetric potential with the potential of the corresponding
group IV element. It is determined how the known structure of
the element of group IV will change under the influence of this

excitatory field (potential). This A" B” is the potential for a
combination of the following:

UIH—V (’—;) — U;V—IV (’7) + UaIV_IV (}7) + [AUS (7_’:) + AUQ (’_;)]’
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Here

U;VJV (l—;) _ U;VJV (_’—;), U:VJV (77) _ _U:VJV (_I—;) ’
ie, U g the U y A" B" symmetric and antisymmetric
portion of the potential, respectively, for the "combination",
AU ¢ and AU , the symmetric and antisymmetric part of
excitement, respectively. In order to solve the problem, the
BN zonal structure of the diamond (the diamond modification
"C" of carbon), GaAS the structure of (Ge -un, AIP - Sji
for,and InSb o — Sn for -is taken as a basis. A few A" B”
of the types of combinations are shown in Figure 4. Here, the
structure of the conductivity zone does not differ qualitatively

from the zone structure of silicon and germanium. The valence
zone also consists of three branches (zones), and the third zone

itself (V3) is separated from the other two zones as a result of
spin orbital interaction. The difference between the valence zone
of intermetallic compounds is that the first two zones, which
correspond to light and heavy holes (Vl , and Vz) the
antisymmetrical part of the potential area, are located in the
center of the Brillyuen zone (/; =0). It is broken down.

Therefore, the maximum energy of the light and heavy holes
slips relative to each other and falls slightly beyond the center of
the Brillyuen zone. It could be that one of them is at the

maximum, or one of them k =0 . However, as a rule, the

slippage is so small that kK =0 the [nSh prices of energy at
its point and maximum point differ from each other by as much

as one hundredth or a thousandth of 1eV. The structure [nAs
of the valence zone of the combination is given in some detail in

the form of 4 b InSh . As it turns out, the maximum of the
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valence zone and the absolute minimum of the conductive zone

fall at the same time as the center of the Brillyuen zone (k = 0)

It is parabolically dependent on energy near the

minimum k , and the effective mass of the electron located at the
bottom of the zone itself is very small m: =0,013 m, (the value

taken from the cyclotron resonance measurements).
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Figure 4. Zone structure and valence band structure of
A"BY (a ) and Structure of the Valentine Zone (b)

For relatively large energy prices, the conductivity zone is no
longer in the form of a parabola, and its curvature is reduced.
Therefore, the effective mass of an electron depends on the
degree of filling of this zone. This, in turn, depends on the
temperature and concentration of additives.
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InSh Taking into account the interaction of the
conductivity and valence zones in the combination (since the
width of the forbidden zone is small), Kane showed that the
expression of energy for different zones should be calculated
from the following cubic equation:

27.2 27.2 272
(E—h k j(E—h k + A4 j{E—h k +4F +ij—
2m, 2m, ¢ 2m, ¢

272
nk + AE +2E50j=0,
3

)
—k’P’| E-

g

2m,

Here E - the energy of the carrier - Eso spin-orbital

disintegration P -is constant, taking into account the interaction
of the conductivity and valence zone.
272
If the effective mass is too small (m" << mo)— s
2m,
the excess may not be taken into account. From (9):

B E(E+AE ) )E+AE, +E )

k* (10)

P{E+Eg +2Evoj
3 5

This dependence is called a expression derived from the
three-zone Kane model.

InSh Taking into account ES o that the combination is
large, and after making a series of simplifications, we can

express the dependence of energy on the wave vector for the
conduction zone from (2.18.9) as follows:

nk’
2m’

n

E(k)= (I-ak?) (11)
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2

Here & = is the parameter that describes the

*

2m AE

n
conductivity zone moving out of the parabolic zone.

The above examples illustrate the main characteristics of
the zone structure of semiconductors. Therefore, we are not
going to show the structure of other items here.
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LABORATORY STUDY No 2

INVESTIGATION OF TEMPERATURE DEPENDENCE
OF SEMICONDUCTOR SAMPLE CONDUCTIVITY

Materials: rectangular semiconductor sample, heater,
milliammeter, millibolt meter, constant current source, ruler,
micrometer, connecting wires.

Purpose: The purpose of the work is to calculate the
conductivity of the sample, study its temperature dependence,
and establish a temperature dependence graph of the

conductivity o = f(t) .
A Brief Introduction to Theory

Among the substances that exist in nature, in addition to
metals, there are substances which, like metals, have electron
conductivity, and in them, unlike metals, the concentration of
freight carriers increases sharply with the increase in
temperature. Such substances have a very large resistance at low
temperatures and are practically insulators, but with an increase
in temperature, their special resistance decreases sharply and at
sufficiently high temperatures it acquires a small value. These
types of substances are called semiconductors. Semiconductors
belong to a class of substances whose conductivity is strongly
dependent on external conditions, especially temperature. At the
small value of the forbidden zone, the semiconductor state
corresponds and at absolute zero tempe-rature it is converted into
dielectricity. In the conductive zone, electrons and in the valence
zone, the holes move under the influence of an electric field and
create a current. As the temperature increases, the number of
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electrons and holes passing through increases rapidly, and the
resistance of the semiconductor decreases with speed.

The main feature of semiconductors is that they do not
have free loads, electric carriers are formed as a result of external
influence. Examples of such external influences include
temperature, radiation, strong electric field, and so on. Since
there are two types of negative and positive loads in
semiconductors, semiconductors have electron and perforated
conductivity A semiconductor whose hole is equal to the
number of electrons belongs to a class of semiconductors. In N-
type semiconductors, the main loads are electrons, and in P-type
semiconductors, the main loads are holes.

The conductivity of semiconductors is explained based on
the theory of quantum mechanics. This theory is called zone
theory. It is known from the zonal theory that in any isolated
atom, electrons can only receive discrete energy values, called
energy levels. According to Pauli's principle, no two electrons
characterized by the same quantum numbers can be located at
each energy level. In other words, there can be only one electron
at each energy level with 4 quantum numbers identical. If there
is a second electron, then its spin quantum number must be
directed in the opposite direction. An electron that is located at a
higher energy level in an atom is called an electron valence
electron. When atoms in solid bodies come close to the
interatomic distance, the interaction between their electron
clouds causes the energy levels of the individual atoms to break
down to form the energy zones of the solid body. Each energy
zone creates discrete levels whose number is equal to the number
of atoms in a crystal, but located very close to each other. Figure
1 shows the electronic structure of the germanium-specific
semiconductor and the formation of an electron-hole transition
as a result of external influence. Germanium is 4 valents. When
one of the bonds is broken as a result of an external influence, a
free electron is formed in the crystal and a hole is formed in its
place. Under the influence of the external field, the electrons are
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the opposite of the field. The holes move in the direction of the
field, creating an electric current.
=L+,

Figure 1. Electron Conductivity and Conductivity of
Germanium Crystal

The conductivity of chemically pure semiconductors is
called specific conductivity, and the semiconductors
themselves are called special semiconductors.Examples of
such semiconductors are Ge, Si, S, Ga, As, and PbS, InSe, GaS
from chemical compounds . The conductivity of semiconductors
is acutely dependent on the external atoms that are fired at them,
i.e. the superconductors. For example, when only 0.001% boron
is added to silicon, its conductivity at room temperature
increases by about 1,000 times.

The energy zone generated by the energy levels of the
valent electrons is called the valence zone, and at a certain
temperature, this level is completely filled. The zone above the
valence zone is called the conductive zone, and all its energy
levels are empty. The difference in energy between the bottom
of the conductive zone and the ceiling of the valence zone is
called the width of the restricted zone. The bottom of the
conductive zone is the minimum, and the ceiling of the valence
zone is the maximum energy levels. In the main case, the valence
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zone in the semiconductor is completely filled, and there are no
freight carriers that can participate in the electrical conductivity
in the crystal. In this case, all the electrons are in a covalent bond.
Under such conditions, the semiconductor material is no
different from dielectric. As the temperature increases, the
electron gains energy that can break that connection. In this case,
a free electron is formed in the crystal cage that does not come
into contact with any atom, and where the connection is broken,
an empty hole is formed. According to the zone theory, as a
result of the movement of the electron, the electron passes
through the forbidden zone and passes into the conductive zone,
and in the valence zone a hole is formed in its place. (Figure 2).
Above the full valence zone is a completely empty zone. Under
certain external influence, electrons pass from the I valent zone
to the second zone. On the other hand, the zone I that has lost
some of the electrons will also be the zone that is no longer filled.
As a result of the formation of such zones, matter acts as a
conductor

11
| AE, laE,
I e .. RO
a o

Figure 2. The mechanism of formation of conductivity in
the semiconductor is the I-valent zone, the II conductive zone,

AE ,the width of the forbidden zone

The permeability of the semiconductors is acutely
dependent on the additives that are shot at them. For example,
when only 0.001% boron is added to silicon, its permeability at
room temperature increases by 1,000 times. In semiconductors,
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the permeability created by the solvent 1is called
superconductivity, and such semiconductors are called
superconductivity. To determine the effect of additives on the
conductivity of the semiconductor, let's investigate the effect of
5 valent As and 3 valent In on the Ge crystal.If's kind of like a
slap in the face to the S-Curve. In such a lattice, each atom has a
valent bond with four neighboring atoms. Suppose that a portion
of the Ge atoms is replaced by 5-valent As atoms, and the As
atom expends 4 electrons to form a valent bond with 4 adjacent
neighboring atoms (Figure 3a). The 5Sth electron of the ace atom
is not involved in the valence bond and remains empty. This is
how this process is explained according to zone theory.
According to zone theory, between the valence zone of Ge
and the conductive zone, the donor energy level of the valence
electrons of As is generated D. This level is located at a distance
of Ed = 0.015 eV from the lower level of the conductive zone and
is called the donor level. When the electrons at the donor level are
energized by Ed = 0.015 eV, they pass into the conductive zone.
Since the excitation energy of the Ed electrons at the donor-level
is approximately two components less than the excitation energy of
the electrons specific to Ge Ag, approximately two components,
when this semiconductor is heated, the acid atoms will be excited
first, and as a result, their concentration will be greater than the
concentration of the specific electrons. Therefore, the conductivity
of Ge will be mainly due to the superconductivity of electrons.The
enzymes that create electron conductivity are called donors.
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Figure 3.

Now suppose that some of the Ge atoms in the space cage
of Ge are replaced by 3-valent In-atoms (Figure 3). The In atom
lacks 1 electron to form a valent bond with the four neighboring
atoms in the same cage . An electron can be obtained from an
atom of Ge. Calculations show that Ed
A=10.015 eV of energy is required for this. This is not the first time
that the S-Class has been in the same position as the S-Class, but
it is moving freely in the S-Class.

Figure 4.

The electrical resistance of semiconductors
decreases sharply with the increase in temperature. The
resistance of semiconductors at certain temperature intervals
decreases by an exponential law with the increase in temperature.
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AEy
R=Re! (1)
The resistance is at R, a temperature of 0° C, AE, the width

of the prohibited zone. This is a special case for the
Conservative Party
E

a

o=0,e 2)
It is in the picture. The quantitative characteristic of a given
semiconductor AE|, is called the activation energy and also the
width of the prohibited zone.
Using the relationship between conductivity and
resistance, we get:

d RS 1 d U
R:p—,p:—,o-:—:—andR:— (3)
S d P RS 1
If we look at it this way, we are going to take a look at the
following:
I d
=.2 0
u S
Here [— is the current strength flowing through the

semiconductor sample, U — the voltage drops in the sample, d-

sample of the length and S — the area of the cross-section.
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COURSE OF STUDY

1. Determine the linear dimensions of the sample with a
caliper (or millimeter ruler).

2. And then he goes on to say, "Wow, this is a great way to get
the most out of it, and to get the most out of it."

Rn
]

BA} { () U .
|

Figure 5. Principle circuit diagram for studying semiconductor
conductivity

3. It is necessary to turn on the heater and measure the
temperature. The temperature of the heater should be
changed by 10° degrees Celsius each time

4. The temperature should vary from room temperature to
100°- degrees Celsius

5. At each temperature, it is necessary to measure the current
passing through the sample and the voltage drop in the
sample.

6. At ecach temperature, o0 =—-— the value of the

permeability must be calculated. To achieve this, the
temperature of the conductor o = f(f) must be

determined on a millimeter sheet of paper
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LABORATORY STUDY No. 3
The Study of the Hall Effect

Purpose: The purpose of study investigates the Hall effect in
semiconductor crystals, to measure the Hall stress, to determine
the Hall constant, to determine the marking and concentration of
the loaders in the sample.

Materials: rectangular semiconductor sample with electrical
contacts, constant current source, ammeter, microvoltmeter,
magnet with gqc.

A Brief Introduction to Theory

The electrical conductivity of metals depends on the
concentration of electrons and their conductivity. Both of these
quantities are the most basic quantities of metals, and it is of great
importance to determine them correctly. A phenomenon called
the Hall effect is used to determine the concentration of metals
in an experiment. The Hall effect can be explained with the help
of the following experiment. Suppose that in the form of a
rectangular parallelopiped, a current with a current with a
current intensity J passes through the sample (Figure 1).

Figure 1. An example of a semiconductor to determine the Hall

effect
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Obviously, within the example, equipotential surfaces are
surfaces that are perpendicular to the direction of current. On the
faces of the specimen, probes are placed symmetrically on
equipotential surfaces. In the absence of a magnetic field, the
potential difference between the probes is zero. Let's create a
magnetic field of a genus with an induction B in the direction
perpendicular to the flow direction of the current . As a result
of the magnetic field, there is a potential difference between the
probes on the surfaces of the sample. This difference in potential
is called the Hall's potential. The phenomenon of a potential
difference in the faces of a current sample as a result of the
influence of a magnetic field is called the Hall effect. To
visualize the Hall effect, the sample is placed in a strong mantle
field.

It has been established from experiment that the difference

in latitude potentials ¢, — ¢, is proportional to the current

intensity J, the magnetic induction B, and the width of the sample
A.
JB
P =0 =R (1)
This is called the R-Holl constant. The Hall constant depends on
the type of sample.

The Hall phenomenon can be explained by the fact that the
Lawrence force exists. Each electron is affected by the Lawrence
force in a direction perpendicular to the magnetic field. This is
the force

f, =evB (2)
Electrons are exposed to the opposite of the magnetic field.
F =ek
And then there is the power of the force, and then there is a
balance between these forces. Then you can write:

eEZQUB,UZEand;E:(pI_(pZ ; U:¢l_¢2
B d B-d

And if we look at it from the other side, J = nevS we get:
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g7 .5 3)

B-d
where S = aS =a-d is the area of the finest part of the
example. And then we get it:

:JBd: JBd:JB; 1B )
neS ne-ad nea "7, 4

O =@,
From here;
R=— %)
ne

is taken. In other words, the Hall coefficient depends on the
concentration of the loaders and the price of the electric load:

' B
¢1_¢2:R']7 (6)

In the words of Hall of Fame,

R=— ™)
ne
It is possible to calculate the concentration of loads from the
expression.
Figure 2 shows a ready-made Hall device, and Figure 3
shows an experimental device for the Hall effect

Figure 2: Magnetic field calibration scheme
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Figure 3. Measuring the dependence of the Hall voltage on the
magnetic field
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COURSE OF STUDY

1. The size of the semiconductor sample should be measured
with a caliper.

2. In the example, the current passing through the sample
should be measured in ammeters.

3. The voltage generated by the hall between the probes must
be measured in millivolts.

4. The value of the magnetic induction must be taken from the
table.

5. Ithas to be calculated based on the results obtained.

Measurement example
a) Calibration of the magnetic field

Table 1: Magnetic field B as a function of the current I
flowing through the reels.

The data from Table 1 are shown in Figure 4.
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Figure 4: Calibration curve as a function of the current [ of the
magnetic field.

[§%]

(b) To measure the dependence of the Hall voltage on
the magnetic field

Table 2: As a function of the magnetic field B of the Uu
Hall voltage (absolute value) for constant latitude 1 currents.

The Uy Hall voltage signal has been determined to be
negative.
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(b) To measure the dependence of the Hall voltage on
the magnetic field

For the latitude currents I =15 A and I = 20 A, the data
shown in Table 2 are graphically given in Figure 5.

Figure 5: Dependence of Uy Hall voltage on magnetic field B:
I=15 A (circles) and / = 20 A (squares). Whole
lines correspond to equation (1).
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