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PREFACE

The rapid development of electronics, particularly the 
achievements in functional electronics, microelectronics, and 
nanoelectronics—an entirely new field of electronics—opens 
up new prospects for the future development of fundamentals 
and circuit design of electronic devices.

A large group of materials with electronic electrical con-
ductivity, whose specific resistance at normal temperature lies 
between those of conductors and dielectrics, can be classified 
as semiconductors. The electrical conduction of semiconduc-
tors is highly dependent on external energy influences, as well 
as on extremely small amounts of various impurities present in 
the semiconductor composition. The control of semiconduc-
tor electrical conductivity under the influence of temperature, 
light, electric field, and mechanical forces forms the basis for 
the operating principles of thermistors, photoresistors, non-
linear resistors (varistors), strain gauges, and similar devices. 
The presence of two types of electrical conductivity in semi-
conductors—electron (n-type) and hole (p-type)—enables the 
fabrication of semiconductor devices with p-n junctions. These 
include various types of both high-power and low-power rec-
tifiers, amplifiers, and generators. Semiconductor systems can 
be successfully employed to convert different forms of energy 
into electrical current energy. Examples of semiconductor con-
verters include solar cells and thermoelectric generators. It is 
also possible to achieve cooling of several tens of degrees with 
the aid of semiconductors. In recent years, the recombination 



luminescence of electron-hole junctions at low DC voltages 
has acquired particular significance for the development of sig-
nal light sources and information display devices in computing 
machines. Semiconductors can also serve as heating elements 
(silicon carbide rods); they can be used to excite the cathode 
spot in ignitron rectifiers, to measure magnetic field intensity 
(Hall transducers), and can function as radioactive radiation in-
dicators, among other applications.

The Author
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SECTION 1. CLASSIFICATION OF MATERIALS 
BASED ON THE VALUE OF ELECTRICAL 

CONDUCTIVITY AND ITS DEPENDENCE ON 
TEMPERATURE 

All substances that exist in nature differ sharply from each 
other due to their physical properties. These distinctive 
properties are characterized by certain physical quantities - 
density, thermal conductivity, heat capacity, heat absorption, etc. 
One of these characteristic quantities is the electrical 
conductivity of matter (special resistance). Each substance is 
characterized by the value of its electrical conductivity  . The 
following table shows the value of the electrical conductivity of 
a number of substances. As can be seen from the table, the special 
electrical properties of metals such as gold, silver, and copper are 
107 Cm·m-1, while for ebonite and amber this quantity is 10-14 

Cm·m-1.  Substances with  a conductivity of 
Cm·m-1  are called conductors or metals, and  those with 

 a composition of Sm·m  are called 
insulators or dielectrics.  

Substances whose electrical conductivity lies within the 
range between that of metals and dielectrics are called 
semiconductors. The electrical conductivity of the 

semiconductors corresponds to the 
Sm·m-1 interval. 

 

 

σ

σ ≈ ( )!" #$#$ ÷

( )!"# !$!$ −− −≈σ !−

( )!" #$#$ ÷≈ −σ



 10 

 
Table 1 

N
o 

Substance , 
Siemens / 

m 

N
o 

Substan
ce 

, 
Siemens / m 

1 Copper 
(electrolyti
c) 

 7 Diamon
d 

 

2 Silver   8 Mica  
3 Copper  9 Pyrex   
4 Gold    10 Quartz   
5 Aluminum   11 Ebonite   
6 Nichrome   12 Paraffin  

 
A typical comparison shows that the price of electrical 

conductivity of semiconductors differs significantly from that of 
metals and dielectrics. Such a designationdoes not provide much 
information about the specific characteristics of semiconductors. 
However, when comparing the temperature dependencies of the 
conductivity (resistance) of metal and semiconductor substances, 
it is observed that there is a sharp difference between the 
temperature dependencies of their conductivity (resistance).  

When the temperature increases, the electrical 
resistance of the metals increases by law. For metals, this 
dependence is expressed as follows: 

 = , (1) 
where R0 is the resistance of the metal at a temperature of 00C, 
and Rt is the resistance of the metal at a certain temperature t. In 
the above expression (1), the quantity α- is the thermal 

σ σ

!"#$#% ⋅! !"!"−

!"##$% ⋅! !!!"!! −⋅!
!"#$%& ⋅! !"!#! −⋅
!"#"$% ⋅! !"!#$ −⋅
!"#"$% ⋅! !"!#$ −⋅

!"#$ ⋅ !"!#$$ −⋅!
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coefficient of resistance, which is approximately equal to 1 for 

pure metals . Resistance for metals depends on the type 

of wire, its geometric size, and temperature. In the case of metals, 
the temperature dependence of the special resistance is also 
expressed as follows. 
                                                                              (2) 

Here  is a special resistance of the metal at 00 C,  

respectively, and at a certain temperature t. The thermal 
coefficient of resistance (special resistance) for metals is positive 
and is determined accordingly as follows: 

=  or  (3) 

The temperature coefficient of resistance (special resistance) for 
metals is the relative change of resistance (special resistance) 
when the temperature of the metal changes one degree in the 
physical sense. In metals, electric charges are free electrons in an 
atom that are in weak bond with the nucleus. Semiconductors do 
not have free carriers. 

In contrast to metals, the electrical resistance in 
semiconductors decreases sharply with the increase in 
temperature. An empirical relationship between the resistance 
of semiconductors and absolute temperature at certain 
temperature intervals is observed as follows: That is, with the 
increase in temperature, the resistance of the semiconductor 
decreases by exponential law. This dependence is expressed as 
follows: 

                                                            (4) 

where  the  quantity is resistance at a temperature of 00 C, k 

!!"#
$

!"#$ !αρρ +=

!ρ !ρ

α
!"#
!#

! !"
!

!ρ
ρα =
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#

$%"%
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is the Bolsman constant, T is the absolute nemerate, and  the  
quantity is the width of the forbidden zone of the semiconductor. 
For the special conductivity of the semiconductor (taking 

 into account that it is, then for the temperature 

dependence of the conductivity of the semiconductor, we take: 

                                     (5) 

 A semiconductor with  a given characteristic quantity is 
also called activation energy. For different semiconductors, this 
quantity is different.  

Activation energy is one of the core values that 
characterize a semiconductor. To determine it, the activation 
energy of the expression (5) is determined by electron volts from 
the angle of inclination of the suspension without logarising it. 

                     :  : ~
 

Figure 1 shows the tem-perature dependence of the resistance for 
metals and semiconductors, and Figure 2 shows the temperature 
dependence of the conductivity of the semiconductor 
(temperature suspension of the conductivity logarithm).  

Figures 1 and 2 show the temperature dependence of the 
resistance for metals and semiconductors and  the 
inverse value of the temperature. The conductivity of 
semiconductors is explained by zone theory. The presence of 
activation energy for semiconductors indicates that a 
certain amount of energy must be supplied to the 
semiconductor in order to create conductivity. This energy 
can be carried out by various methods, for example, by heating 
the semiconductor (giving thermal energy), illuminating matter, 
by radioactive radiation, by the influence of electric and 
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magnetic fields, by creating high pressure, etc. All this shows 
that  semiconductors are substances whose electrical 
conductivity varies strongly under the influence of external 
factors such as temperature, pressure, external fields, 
lighting, and radioactive radiation.     

 
  

 
 
 
 
 

 
 
 

Figure 1. Temperature 
dependence of the resistance 
of metal and semiconductor. 

 
 

Figure 2 Dependence of the 
inverse value of temperature

 in metals and 
semiconductors.  

 
Since the conductivity of semiconductors is close to zero 

at an absolute temperature ( conditional) and when no 
additional energy is supplied from the outside in any way, 
semiconductors are substances that have conductivity only 
when excited. Although there is no difference in principle 
between semiconductors and dielectrics, the difference between 
them and metals is very noticeable.  

The effect of various factors on the conductivity of 
semiconductors manifests itself in different ways, depending on 
the properties and structural properties of the substances. Under 
the same external influences, the same semiconductor has 
completely different conductivity, depending on the purity of the 
monocrystals, the perfection of the crystal, the defects in the 

−σ!"

!→!
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crystal, the concentration of different adsorption atoms, etc. 
There are two types of semiconductors: ionic and 

electron-type. In ion-type semiconductors, conductivity occurs 
with ions, and therefore the process of current passing through 
the ion-type semiconductor is accompanied by changes in 
composition and structure. Therefore, this type of 
semiconductor material is not used in the manufacture of the 
device. This is due to the fact that they are subject to 
disintegration (wear) during the current flow process, and the 
parameters of the device change. The following table shows 
some semiconductor elements in the table "Periodic System of 
Elements." 

In electron-type semiconductors, the charge carriers are 
electrons, and therefore the process of transporting material does 
not occur when passing through an electric current, so the 
characteristics of devices made of electron-type semiconductors 
remain unchanged for a long time 

 
 

Table 2 
      

Categories            
Periods  

II III IV V VI VII  

II Be  B  C  N O   
III  Al Si P S Cl  
IV  Ga Ge As Se Br  
V  In Sn Sb Te J Xe 
VI   Pb Bi Po At  

 
In the modern era, along with simple semiconductors, 

semiconductor materials with highly diverse and complex 
compositions have also been developed. At present, this variety 
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continues to expand. Simple semiconductor substances include 
12 elements found in the Periodic Table: B-boron, C-carbon, Si-
silicon, P-phosphorus, S-sulfur, Ge-germanium, As-arsenic, Se-
selenium, Sn-gray tin (stannum), Sb-stibium, Te-tellurium, and 
I-iodine. Among the elemental semiconductors, germanium and 
silicon are the most widely used and the most abundant in nature. 
Based on these semiconductors, a large number of devices such 
as semiconductor diodes, transistors, thyristors, etc. are 
produced. There are numerous binary, ternary, quaternary, and 
other complex compounds that possess semiconductor 
properties. The general chemical formula of binary compounds 
is expressed as AXB8-X, where element A belongs to group x 
and element B belongs to group (8-x). For example: AI BVII, 
AIII BVI. Materials such as AgCl, CuBr, KBr, LiF, InSe, GaSe, 
and others belong to the class of binary semiconductors. 
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SECTION 2. TEMPERATURE DEPENDENCE OF 
THE CONDUCTIVITY OF METALS 

 
The foundation of modern ideas about the electrical 

conductivity of metals and semiconductors was laid by Drude in 
1900. This theory was later further developed by Lawrence. 
Zommerfeld further developed this theory by incorporating 
elements of quantum statistics. A further development of the 
theory of electrical conductivity is based on the quantum 
mechanical theory of a solid object. In the theory of 
semiconductors, the Drude and Lawrence approach retains its 
relevance today. To this end, let's take a general look at the basics 
of classical electron theory. 

Many concepts of semiconductor physics are based on the 
electron theory of metals. On the basis of this theory, 
characteristic quantities such as the electron conductivity of 
semiconductors, the validity of freight carriers, etc., are also used 
for semiconductors in the appropriate order. 

In the classical electron theory of metals, the free electron 
gas in metals is considered to be an ideal gas in molecular 
physics, similar to that of molecular physics, which is in thermal 
equilibrium with the ions of the crystal cage. In this case, the 
specific volume of the gas and the interaction of electrons with 
each other are not taken into account. The state of each particle 
is characterized by the sum of six numbers: x, y, z coordinates, 
and   velocity (or also Px, Py, Pz momentum), or by 

two  and  (or ) vectors. According to the classical theory

, the specific volumes of electrons cannot be taken 

into account, since  the radius of electrons is 
in the arrangement and the volume corresponds to it. If we 

!! "# υυ !υ

!! !! !
!

!"#$ "%
#

−≈
!"#

$ %&$' −≈
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assume that the concentration of electrons  is in 
the arrangement, then the total volume of free electrons in the 
volume considered under normal conditions is equal to the total 
volume of electrons under normal conditions. 

 He took his part. This is a 
very small number, as it turns out. However, it is important to 
consider the interaction between electrons. Thus, since the 

charge of the electrons  is Kl, the Coulomb 

interaction force between them   at a distance m  in 

the crystal lattice  is  N, in this case, each electron can 
acquire an acceleration m/sec2 under the influence of such a 
force, and the potential energy of the interaction between them is 

within  the crystal lattice.It is assumed that 
it is in the form of ~14 eV at a distance m. In such a convergence, 
the total energy of the coulomb interaction (repulsion) of the 
electrons must have a very large value. However, as the 
experiment shows, the energy of electrons in metals is negative 
compared to the energy of infinitely spaced electrons. This is due 
to the fact that, in addition to the coulomb repulsion forces of 
electrons from each other, they also have gravitational forces 
reciprocal with their nuclei. The interaction energies of electrons 
with nuclei are the interaction energies between them.  The 
electron moving in the crystal lattice in the field created by 
all the electrons and nuclei is affected by both repulsion and 
gravitational forces. Under the simultaneous influence of 
these two types of forces, the movement of an electron gives 
rise to the idea of free movement.  

Electrons move chaotically in the crystal lattice. During 
this movement, the electrons collide with the ions of the crystal 
cage, and as a result, their velocities  change at any moment in 

!"#$%&' −≈

!"#$%&
' !'!'!'()* −− =⋅==

!"!#$%!& −⋅=
!"!"# −=

!"#$ −⋅

!!"#! ⋅ !"!"# −=
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terms of value and direction. A change in the velocity of the 
electrons causes the kinetic energy of the electron to change. In 
the case of thermodynamic equilibrium, the temperature of the 
electron gas must be equal to the tempe-rature of the ions in the 
cage. This means that as a result of collisions, neither the electron 
gas to the cage ions nor the cage ions are energized on average. 

If we change the temperature of the electron gas, the 
temperature of the cage must also change due to the exchange of 
energy between electrons and the ions of the crystal lattice.  
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SECTION 3. ELECTRON THEORY OF 
ELECTRICAL CONDUCTIVITY OF SOLID 

OBJECTS. 
 

In 1900, Drude laid the groundwork for scientific ideas 
about the electrical conductivity of metals and semiconductors. 
Lawrence later developed this theory. Zommerfeld brought this 
theory to a modern level by incorporating elements of quantum 
statistics. In modern times, the theory of the electrical conductivity 
of a solid is based on the concepts of quantum mechanics. This 
theory is now known as the Drude–Lawrence theory. Let's take a 
general look at the basics of classical electron theory. 

Many concepts of semiconductor physics are based on the 
electron theory of metals. On the basis of this theory, quantities 
such as electron conductivity, load carrier conductivity, free 
escape distance, etc., are also applied to semiconductors, 
respectively. 
 In classical electron theory of metals, free electrons in 
the thermal equilibrium with the ions of the crystal cage in the 
metal are regarded as the ideal gas in molecular physics. In this 
case, the specific volume of the ideal gas and the interaction of 
electrons with each other are not taken into account. The state of 
each particle is divided into six numbers: three x, y, z 
coordinates, and three   Velocity (or Px, Py, Pz 

momentum) is characterized by the sum of momentum. Often the 
radius of a particle in a crystal  and the velocity vector.  (or 

It is made up of clarifications. Radius of electrons according 
to classical theory In the case of the Spurs, the 

Spurs are in the same league as the Spurs. In this 
case, it is practically impossible to calculate the specific volumes 
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of electrons. If the concentration of electrons If we 
assume that the electrons in the free electron gas are the total 
volume of the object.  He 
might have taken his part. This is a very small amount compared 
to the total volume. However, the interaction between electrons 

cannot be overlooked. The charge of electrons  

Kl, in the Crystal Lattice  m A Close Encounter 

Between the Forces of Darkness  N This is because each 

electron is under the influence of this force. m/san2 It is 
possible that the energy of the interaction between them is within 

the crystal cage. m Əlaqə ~14 eV If we look at it this 
way, we can see the importance of interoperability. In this case, 
the total energy of the Coulomb interaction (repulsion) of the 
electrons must have a very large value in such an approximation. 
However, as the experiment shows, the energy of electrons in 
metals is negative compared to the energy of infinitely spaced 
electrons. This is explained by the fact that in addition to the 
coulomb repulsion forces of electrons from each other, they also 
have gravitational forces reciprocal with their nuclei. The 
interaction energies of electrons with nuclei are the interaction 
energies between electrons.  

The electron moving in the crystal lattice in the field 
created by all the electrons and nuclei is affected by both 
repulsion and gravitational forces. Under the simultaneous 
influence of these two types of forces, the movement of an 
electron gives rise to the idea of free movement.  

Electrons move chaotically in the crystal lattice. During 
this motion, the electrons collide with the ions of the crystal cage, 
and as a result, their velocities  change at any moment in terms 
of value and direction. A change in the velocity of an electron 

!"#$%&' −≈

!"#$%&
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causes a change in its kinetic energy. In the case of 
thermodynamic equilibrium, the temperature of the electron gas 
must be equal to the temperature of the ions in the cage. This 
means that as a result of collisions, neither the electron gas to the 
cage ions nor the cage ions are energized on average. 

The temperature of the electron gas changes, and the 
temperature of the cage must also change due to the exchange of 
energy between electrons and the cage ions. Since the scattering 
of electrons during collisions with the cage is random, the 
average velocity of an electron over a long period of time and its 
average displacement must be zero. Since all electrons are in the 
same condition, this condition is true for any electron. Thus, 
since the mean displacement vector of electrons in chaotic 
thermal motion is zero, the thermal motion cannot create an 
electric current, i.e., a directed flow of electric charges from any 
cut-off. Therefore, in order to create an electric current, it is 
necessary to create a directional movement of the loaders.  

Such directional motion of freight carriers can be created 
due to the influence of electric field, temperature gradient, 
uneven illumination of the crystal, radiation of the crystal and 
other factors. 

If we create an electric field with an intensity of E  in a 

metal, then the force is acting like every electron  . 
Under the influence of this force, the electron 

                (1) 

It takes the urgency. The velocity of an electron over time t is 
the speed at which an electron is absorbed 

    (2) 
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If the electron has an initial velocity , then the velocity of t is 
also the velocity of the electron. 

          (3) 

They can. (3) It is evident from the statement that the 
accumulations of the velocities of the electrons in the direction 
of the field decrease, while the accumulations in the opposite 
direction of the field, on the contrary, increase, and as a result, 
the whole electron gas takes a directional motion. Thus, in 
addition to the chaotic motion of electrons, there is also an 
additional motion of electrons directed against the field.  

In an electric field, the entire directional motion of 
electrons is called drift, and the velocity of this movement 

is called the drift velocity. During the period of t-time , an 
electron is formed under the influence of an intense electric field. 

                           

 (4) 
It changes its location. 

In classical electron theory, a change in the velocity of an 
electron is seen as the result of an electron's interaction with a 
crystal lattice (atom or ions). In other words, the interaction of 
an electron with a lattice atom or ion is similar to the collision of 
particles in mechanics. To characterize the motion of the electron

, the concepts of the average length of the free escape path and 
the time interval expended on  it is used. The average time 
interval between two consecutive collisions is called the 
average running distance.  

The average running distance is related to the average 
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running time as follows. 
              (5) 

This is the average velocity of the electron's thermal 
conduction. 

From the above judgments, it is possible to determine the 
average drift velocity. 
Since the velocity of motion of the electron at the moment t = 0 
is equal to zero, then t =  instantaneously correspondingly 

     (6) 

We can write it. The drift velocity must be equal to the 
numerical average value of the starting and ending velocities: 

    (7) 

From the above expression, it can be seen that the average 

velocity of directed motion is directly proportional to the 
intensity of the electric field. 

The quantitative factor that correlates the drief 
velocity to the intensity of the electric field is called the 
validity of electrons and is usually  denoted by the letter: 

             (8) 
Let's take a look at the comparison of the above 

statements: 

                                               

  
In other words,  the conductivity of electrons is equal to 

the drift velocity of a single field of electric intensity in 
numerical terms. 
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If there is a concentration of electrons  , then the 
density of the electric current passing through the unit width at a 
single time: 

    (9) 
They can. This expression is differently an expression of Ohm's 
law. (9) For special electrical conductivity, we take from the 
expression: 

    (10) 
Or let's take it: 

     (11) 

The expression (11) was taken by Drude. If we find it from 
the expression (5) and write it in place of (11) 

    (12) 

We get it.   
Ohm's law applies only when the concentration and 

efficiency of the freight carriers do  not depend on the 
intensity of the electric field. These areas  are called weak 
electrical fields. However, as the field intensity increases, the 
moment comes when the concentration and density of the 
electrons does not remain constant, but changes. These electric 
fields  are called strong electric fields. In strong electric fields, 
deviations from Ohm's law are observed, resulting in the 
emergence of entirely new effects. Let's take a look at an 
example of a change of pace. In the deduction of Ohm's law, we 
assume that at the end of the free escape path, the electron gives 
its energy completely to the cage when it collides with the ion of 
the cage. In weak electric fields, the drift velocity is very, very 
small than the velocity of heat movement, so its duration does 
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not depend on  the intensity of the electric field  . However, 
with the increase in the electric field, the speed of the drift also 
increases, and the moment comes when it is in the same order as 
the speed of heat movement. In this case, it is a free escape. 

    (13) 

The smaller the velocity of thermal movement , the smaller 
the temperature of the object, the greater the load-bearing 

capacities in weak areas, the  smaller the values of the crisis 
areas corresponding to the deviations from Ohm's law. 

If we destroy the electric field at any given moment, then 
the directed motion of the flood of electrons will continue until 
they completely transfer the additional energy they gain in the 
field to the crystal cage and complete their movements. This 
directed motion is interrupted after the average  time, and the 
chaotic thermal motion of the electrons is restored. Thus, as can 
be seen from the judgments, while collisions bring a set of 
electrons into equilibrium, the electric field disturbs this 
equilibrium. 

The transition of any system from imbalance to 
equilibrium is called the relaxation process or relaxation, 
and the time it takes to do so is called the relaxation period. 
In other words,  when it comes to relaxation, it is understood 
that the time it takes to restore the disturbed balance for any 
reason. Based on the above-mentioned judgments, it can be 
noted that  the period of free escape  is the period of   relaxation. 

In the International System of Units (ISS), electrical 
conductivity is measured in simens (Sm) and specific electrical 
conductivity is measured in simens/meter (Sm/m). In this case, 
the formula (8) for the unit of power in BS 
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We get it. Units of velocity and electric field intensity are used 
to calculate the unit of velocity.  

 

Some can be expressed.  
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SECTION 4. CHARACTERISTIC PARAMETERS 
OF SEMICONDUCTORS; SPEED OF ELECTRONS, 
FREE RUNNING DISTANCE, CONDUCTIVITY OF 

ELECTRONS 
                                   

As a result of the collision of electrons with the cage, a 
scattering process occurs. Typically, the scattering of electrons 
from the cage is random. Therefore, the average velocity of an 
electron over a long period of time and its average displacement 
must be zero. Since all electrons in a crystal are in the same 
condition, this condition is true for any electron. Thus, since the 
mean displacement vector for electrons in chaotic thermal 
motion is zero, the thermal motion cannot create an electric 
current, i.e., a flow of electric charges from any cut-off. In order 
to create an electric current, a directional movement of the 
loaders must occur. Such a directed movement of freight carriers 
can be made possible due to the influence of factors such as the 
electric field, temperature gradient, uneven illumination of the 
crystal, and so on. 

If we create an electric field of E-intensity in a metal wire, 
then each electron is affected by the force of the electric field 

 . Under the influence of this force, the electron 

   (1) 

He takes the urgency.  The velocity of the electron gained 
during the period of time  

    (2) 
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If there is an initial velocity of an electron , then the velocity 
of the electron at t moment of time is the velocity of the electron. 

                      
          (3) 

They can. From this it can be seen that the accumulation of the 
velocities of the electrons in the opposite direction of the field 
decreases, while the accumulation in the opposite direction of the 
field increases, and as a result, as a whole, the entire electron gas 
receives a certain directional motion. Thus, in addition to the 
chaotic motion of electrons, there is also an additional motion of 
electrons directed against the field as a whole.  

In an electric field, the direction of the electrons as a 
whole is called the drift motion, and the velocity of this 
motion is called the drift velocity. During the period of t-

time , an electron is formed under the influence of an intense 
electric field. 

    (4) 

It changes its location. 
In classical electron theory, a change in the speed of an 

electron is seen as the result of its interaction with the crystal 
lattice (atoms or ions). In other words, the interaction of an 
electron with a lattice atom or ion is likened in mechanics to the 
collision of particles. In this case, it is assumed that the electron 
travels the distance between two successive collisions like a free 
particle, without being affected by the cage and the rest of the 
electrons. To characterize the motion of an electron , the 
concepts of the average length of the free escape path and the 
time interval expended on  it are introduced. Here is the 
average time interval between two consecutive collisions, 
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and the average running distance is the average running 
distance.  

Of course, the average running distance is the average 
running time.  

    (5) 

Someone has to be in a relationship. Here is the average 
velocity of heat movement. From the above judgments, it is 
possible to determine the average drift velocity.  Since the 
velocity of motion of the electron at the beginning t=0 is equal to 
zero, t=  instantaneously corresponds to zero. 

    (6) 

We can write it. The drift velocity must be equal to the numerical 
mean of the beginning and end velocities: i.e. 

    (7) 

From this expression, it can be seen that the average velocity of 

the directed motion is directly proportional to the field 
intensity of the electric field. 

The quantitative factor that correlates the drief 
velocity to the intensity of the electric field is called the 
validity of electrons and is usually  denoted by the letter: 

                        (8) 
To compare (8) and (7) 

    (8a) 

We get your expression. From this it can be seen that  the 
efficiency of the electrons is equal to the rate of drift gained 
by the electron in a field of uniform intensity in numerical 
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value. If there is a concentration of electrons  , then the 
electron flow passing through the single node of the sample at a 
given time is the density of the electric current: 

               (9) 
They can. This equation is the expression of Ohm's law in a 
differential way. A special electrical conductivity of the last 
expressions  

                (10) 
and  

     (11) 

We get it. The last expression was first  taken by Drude. If  we 
find the expression (5) and replace it with (11), we get it for 

conductivity; 

    (12) 
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SECTION 5. A WEAK AND STRONG 
ELECTRIC FIELD. RELAXATION 

DURATION 
 

It is derived from classical electron theory that Ohm's law 
is paid only if the concentration and validity of the loaders do  
not depend on the intensity of the electric field. This field is 
called a weak electric field. However, as the intensity of the 
electric field increases, there is a moment when the concentration 
and charge of the electrons does not remain stable and begins to 
change depending on the field. These electric fields are called 
strong electric fields. In the case of strong electric fields, there 
are exceptions to Ohm's law, which results in the emergence of 
entirely new phenomena. Let's take a look at this as an example 
of a change of scenery. In the deduction of the expression of the 
Ohm law, it is assumed that at the end of the free escape path the 
electron gives its energy completely to the cage in a collision 
with the ion of the cage. In weak electric fields, the drift velocity 
is very, very small than the velocity of heat movement, so  its 

duration does not depend on  the intensity of the electric field  
. However, with the increase in the electric field, the speed of the 
drift also increases, and the moment comes when the drift speed 
is the same as the speed of the thermal movement. In this case, it 
is a free escape. 

    (1) 

It decreases accordingly, which leads to a decrease in 
conductivity, as well as a decrease in electrical conductivity.  

If the electric field disappears at any given moment, then 
the directed movement of the flood of electrons will continue 
until they completely transfer the additional energy they gain in 
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the field to the crystal cage and complete their movements. This 
directed motion is interrupted after an average  time, and the 
mixed (chaotic) thermal motion of the electrons is restored. Thus, 
while collisions bring a set of electrons into equilibrium, the 
electric field disturbs this equilibrium. 

The transition of any system from a state of imbalance 
to equilibrium is called the relaxation process or relaxation, 
and the time it takes to do so is called the relaxation period. 
In other words,  when it comes to relaxation, it is understood 
that the time it takes to restore the disturbed balance for any 
reason. In other words,    the time to relax is the time to relax. 

In the International System of Units (BS), electrical 
conductivity is measured by simensis (Cm), and special electrical 
conductivity is measured by simens/meter (Cm/m). It is 
measured. In this case, we will get the following for the unit of 
execution in BS: 

 
Units of velocity and electric field intensity are used to calculate 
the unit of velocity.  

 

Someone can express it.  
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SECTION 6. CRYSTAL CRYSTALS. 
TRANSYLATION PERIOD 

 
All solids in nature are divided into two groups: crystalline 

and amorphous substances. Most solid semiconductors and solid 
metals have a crystalline structure. The set of atoms that make 
up these substances is arranged in a certain order in space. When 
we talk about the orderly arrangement of atoms in space, we 
understand the properties of spatial periodicity or 
translation symmetry. The concept of a crystal lattice is used to 
describe these regularities. A crystal cage can be thought of as a 
three-dimensional grid. Atoms (ions or molecules) are located at 
the node points of this network.  It is possible to imagine three 

 vectors that  are not on the same plane  , and when 
you move these vectors along the length of the crystal by the 
same number of their exact times, they overlap (repeat) with 
themselves. In this case, since the effect of thermal motion and 
each real crystal are limited, it is not necessary to take into 

account the presence of outer surfaces.  The  
directions of the vectors can be selected in different ways in the 

cage. On the other hand,  when you move a crystal as many 

vectors equal to the exact times of the crystal, it  overlaps on 
its own.Vectors are the smallest vectors that pay the periodicity 
in the selected direction . In such a selection,  the vectors  

are called translation, scale, or fundamental vectors, as well as 
the translation period  of the crystal lattice.  A parallel piped 
element or crystalline core  built on three vectors  is called a 

crystal core.  And  let us orient the vectors in the 
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positive directions of the x, y, and z axes in the right coordinate 
system. He is right on the right  side of the 
In the coordinate system, the vector product is the volume of the 
elementary nucleus.  

            (1) 
Someone can express it. 

The arrangement of atoms in the elementary nucleus is 
different for different matters. Atoms are located at the vertices, 
faces, and intersections of the diagonal of the parallelpipe. If we 
were to put a large number of such elementary nuclei together in 
an orderly manner, we would get an ideal monocrystal.  

The simplest linear cage is used to determine the geometric 
properties of a crystal cage. A linear cage is also  known as a 
one-dimensional cage. In such a cage, the particles are arranged 
periodically along an infinite line. Such a cage can be achieved 
by moving an atom or group of atoms along a straight line  as 
sequentially as many as the same pieces. In the case of a linear 
lattice, we have only one  translation vector, and the 

volume of such a lattice  is equal to the length of this segment.
 
Figure 1 shows three different linear cages. The black and 

white circles represent different types of atoms.  
 

 
 
 
 
 
 
 

Figure 1. A linear one-dimensional cage 
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As can be seen from the condition of payment of 

periodicity , in the case of ) the linear lattice consists of one, 

and in  the case of ) and ) in the case of two atoms.  
Accordingly, the cages are simple or primitive ) and the 
cages  are called complex cages. Figure 2 shows the plane cages. 

If the principal  vectors are selected in such a way that 
any translation of the lattice  can be described by  integer 

values  , then  the  elementary core on which it is 

built is called a primitive core. A lattice in the form of 2, a is a 
simple lattice. Another simple lattice in the form of 2,b is 
described. 

  
              a)                             b)                          c) 
 

Figure 2. Planar lattices 
 

If we place the same type of atoms at the intersections of 
the diagonals of the parallelograms in the lattice of this lattice in 
the form of 2,a, we get the lattice in 2.b. In such a lattice, the 
primitive nucleus can be selected as a striped part, and if we shift 
the atoms at the intersections of the diagonals in the same way, 
then we get a primitive nucleus with two atoms, as described in 
Figure 2,c. If we place atoms of different types at the 
intersections of parallelograms in the form of 2,b, a complex 
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cage is obtained, since in this case the nodes of the cage are not 
equivalent. 

 
                     a)                                         b) 

Figure 3. Symmetrical Plane Cages 

A symmetrical plane lattice is depicted in Figure 3.a.  A  
primitive nucleus, which is built on vectors, consists of two 
atoms. However, if we place the same type of atoms at the 
intersections of the diagonals of hexagons, we get a simple lattice 
(Figure 3,b). 

 
 
 
 
 
 
 
 
 
 
 
 
 

!! !!
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SECTION 7. CRYSTALLINE SYSTEMS. BRAVE 
CAGES 

 
The atoms that make up solid bodies arrange in space with 

a certain regularity, forming a crystal lattice. The basis of the 
crystallographic cages is a geometric figure in the form of a 
parallelepiped. In the science of crystallography, it has been 
accepted that the lengths of three sides intersecting on one 

 side of a parallel pipe, and the angles between these sides

, are indicated by  and with and  
(Fig. 1). 

In the case of a three-dimensional metallic cage, the 
tongues and angles of the crystal core  are denoted by the 

tongues and angles  . Depending on the value of the 
crystal core, tongues, and angles, the crystals are divided into 14 
possible types of crystal structures and 7 syngonia. The 14 crystal 
cages that are part of these seven crystal cages are called Brave 
cages. 

1. A Regular or Cubic Syngon (Fig. 1). In this case, the 
angles and sides are equal  to each other and 

are in harmony with each other. Three types of 
cages are possible in this system: a simple cage (Figure 2.a), 
a volume-centered cage (Figure 2.b), and a surface-centered 
cage (Figure 2.c). 

2. Tetragonal or quadratic syngony. In this case, the seat of 
the elementary core is a rectangular parallelepiped with a 

square seat (Fig. 3)  and . 
In this system, there is a simple (3 a) and volume-centered 
(Fig. 3 b) cage. 
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3. Rhombic or orthogonal system. In such a lattice 

, i.e., the elementary core is 
a rectangular parallelpiped with different languages. There 
are four types of cages here (Figure 4): simple , base-

centered , volume-centered  , and surface-

centered . 

4. Monoclonal system:   and 

. In this system, the elementary core mail is 
parallelogramed, with two pairs of faces rectangular and one 
pair of faces parallelogram. In this syngon, two types of 
cage are possible: simple ( ) and base-centered ( ) cage 
(Fig. 5). 

5. Rhombohedric or trigonal syngony. 
It is less than 1200. In this 

case, the primary core is the rhombohedrk. There is only one 
type of primitive cage in this syngon (Fig. 6).  

6. Hexagonal syngony (Fig. 7). In this system , 

.  . . Here, three simple nuclei 
together form a hexagonal prism, which is the elementary 
core of syngony.  

7. Triglycerides Synagogues. In this system, all languages and 
angles are different, i.e., .  There is 
only one type of cage here (Fig. 8). 

Often there are structures in real crystals that cannot be 
described with a Brave cage. Such structures are depicted by 
several Brave cages dressed (slid relative to each other) clad 
inside each other. 
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Brave Cages 
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Figure 2 
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Figure4 
 

Figure 5 
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SECTION 8. A MODEL FOR THE 
CONDUCTIVITY OF SEMICONDUCTORS 

IMAGINE. AN UNDERSTANDING OF THE HOLES 
 

The formation of a crystal is formed on the basis of the 
interaction of the l-cage atoms, and the nature of this interaction 
is determined by the structure of the electron layers of the atoms 
that make up the crystal. In this case, the main role is played by 
the exchange effect, as a result of which the atoms interacting 
during the formation of a crystal lattice can exchange electrons 
with each other and give or receive electrons. This process leads 
to the formation of gravitational forces between them. If a crystal 
lattice is made up of atoms of the same element, it is called 
homopolar bonds because these bonds are formed between the 
same atoms  . Homopolar bonds are primarily involved in 
valence electrons, so it  is also called covalent bonding. The 
strongest covalent bond occurs when atoms communicate with 
pairs of electrons with spins directed opposite each other. It 
seems to me that the covalent bond must have the property of 
saturation. The presence of the third electron cannot strengthen 
the bond, because then the Pauli principle is violated.  

This property of a covalent or electron pair bond is derived 
from the Pauli principle, and for the given case, it can be 
expressed as follows: two electrons with the same spin 
projections cannot be located in the same region of the space 
between atoms. Examples of covalent-related substances include 
diamond, silicon, germanium, etc. 

If the crystal lattice is formed as a result of the interaction 
of atoms of different elements, it shifts towards the atom that has 
more electrons in the oblast valent zone of the electron cloud 
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with the maximum density, as a result of which this atom is 
converted into a negatively charged ion, and the other atom is 
converted into a positively charged ion, and the Coulomb 
interaction force plays a key role between them, such a bond is 
called ion bonding, respectively. Ion bond is found in alkaline-
hologenic salts (NaCl,  KCl, LiF, etc.) It makes itself more self-
explanatory. Ion bonding can also be viewed as a limit state of 
covalent bonding. In general, it is never possible to talk about a 
single communication, it can only be said that any 
communication prevails. Therefore, when we are talking about 
sulfides or oxides of the elements of the second group, for 
example, we can say what percentage of the bond is ion, and what 
percentage belongs to another type. The other limit of the 
exchange interaction occurs in metallic communications. In the 
crystal cages of metals, some of the valence electrons, which are 
very weakly bonded with their atoms, do not belong to a specific 
atom, but belong to the crystal cage as a whole, and are collected. 
Even the electron gas in the crystal lattice, which behaves as a 
kind of ideal gas, creates metallic bonds and, as the definition 
suggests, is mainly characteristic of metals. In any case, there can 
be no sharp boundary between these three connections. Organic 
crystals exhibit weaker bonds as a result of the Van der Waals 
interaction, also known as molecular bonding. In such crystals, 
the density of the electron cloud within the cage can change at 
any time as a result of fluctuations in different parts, even if it is 
small, which leads to the formation of a dipole moment in that 
part. The interaction of such instantaneous dipole moments 
ensures the stability of the crystal as a whole. 

Thus, all of the types of communication that we see in real 
crystals can manifest themselves to varying degrees at the same 
time, but since always one of them plays a superior role, the 
properties of the crystal are largely determined by it. Covalent 
communication plays a decisive role in the formation of 
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semiconductor properties, which are our main research objects. 
Let us analyze the silicon crystal example of 

semiconductor electrical conductivity. Germanium and silicon, 
which have a wide range of applications, are mainly simple 
semiconductors with covalent bonds, with a diamond-type 
crystal coefficient (Figure 1.23,a). Each crystal structure is 
characterized by the number of closest neighboring atoms 
located at equal distances (d) from the atom taken. This number 
is called the coordinate number and is denoted by z. For example, 
a simple cube for a   crystal is a volume-centric 
cube for a crystal. 

  

The elementary lattice of a diamond crystal groove can be 
described by a Brave cube lattice centered on two surfaces that 
are slid diagonal for about a quarter of it relative to each other 
(Figure 1). In such a lattice, each atom has four closest neighbors 
(z = 4). As can be seen from the picture, in a cubic crystal lattice, 

an atom falls on each elementary nucleus , it 

should be noted that the elementary core in the lattice can also be 
represented as a cube (Fig. 1,c), which is an atom in the center of 
the cube and four atoms at the vertices. Each of these atoms has 
two atoms.  

 
Figure 1. Diamond Crystal Crystal Lattice 
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A diamond-like silicon atom has 14 electrons and is 
divided into electron layers as (1s2)(2s2)(2p6)(3s2)3p2. The third 
layer, which is not fully filled, has 4 valence electrons. As we 
have noted, silicon has a diamond-type crystal structure, and 
each atom located in the center of the tetrahedrin in such a cage 
is connected to its electron pairs with the other four atoms that 
are closest to it. Thus, the four valence electrons of each silicon 
atom are involved in the formation of the tetrahedric covalent 
bond. Since such a crystal does not have free carriers, it does not 
conduct an electric current. In order for a crystal to have 
electrical conductivity, it is necessary to tear off some of the 
electrons involved in the covalent bond by any means (quantum, 
thermal energy, irradiation, etc.) and release it inside the crystal 
lattice. In the energy diagram, let's refer to the energy of the 
electron involved in the communication  as EV, and the energy 
of the electron disconnected from the communication  with ES. 
As you can see from this diagram, the energy used to break the 
connection  is ES-EV. This energy is equal to 1.08 eV for silicon. 
When an electron is disconnected from the bond, an incomplete 
bond is formed. 

Figure 2 shows the ideal crystal diagram (a), the formation 
of a free electron as a result of the thermal dances of the crystal 
cage (b), and the absorption of the corresponding energetic 
photon (c). A covalent bond moves chaotically on an electron 
crystal that has been torn from the bond.  

If the electron approaches the place where it is 
disconnected, it can send its energy into the cage or radiate it in 
the form of a photon and reunite with the atom. This process is 
called recombination. This process is the opposite of the process 
of separation of the bonded electron from the bond. In the 
process of generation, a free electron is directly generated, while 
in the process of recombination both carriers are destroyed. 
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a)                    b)                           c) 

Figure 2. Formation of conductivity due to lattice 
vibrations and the excitation of semiconductors 

In a pure semiconductor, the number of free electrons and 
incomplete bonds is the same, and therefore the electroneutrality 

of the crystal as a whole is not disturbed. If we  apply an 
external electric field to such a crystal, each free electron is 

affected by the force of this field  , so they gain a drift 
velocity in the opposite direction of the field, resulting in a 
density of 

                            (1)  
Some of them create a set of electrical currents. Here the 
concentration of the n-electron is the strength of the μn-electrons. 
While the concentration of electrons in metals does not depend 
on external factors such as illumination, thermal energy, 
radiation, etc., since these factors play a key role in 
semiconductors, their electrical conductivity can vary over a 
wide range. However, there are other mechanisms of 
conductivity in semiconductors. Indeed, as a result of the motion 
of the electron, the broken bond can change its position from one 
atom to another, and this movement occurs in a manner similar 

to the chaotic motion of an electron.  When applying an 
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external electric field, the movement of electrons opposite the 
field (drift motion) prevails, and they are able to occupy empty 
contact points in the direction of their motions. If all the 
connections are complete in ideal crystals, the movement of the 
connected electrons would be impossible according to Pauli's 
principle. The presence of broken communication points allows 
electrons to move opposite the field, thereby allowing a set of 
valence electrons to participate in conduction. In this case, the 
validity of the bonded electrons should depend on the number of 
vacancy sites (the greater the number of broken bonds in the 
crystal, the more likely they are to be captured by neighboring 
bonded electrons). If we denote the number of bonded electrons 
by N, and their conductivity , then the corresponding current 
density generated by them: 

                                       (2) 
They can. There are two types of charge carriers in 
semiconductors - free electrons and bonded electrons. This is 
why the final sentence of the sentence is: 

                  (3) 
This is expressed by the sum of the currents. The movement of 
the connected electrons in the opposite direction of the field 
gives rise to the movement of the broken communication points 
in the direction of the field, which is equal to the charge of the 
electrons and is as strong as the motion of the e+-positive charge 
in the field (Figure 3). In this case, it should be borne in mind 

that the positive charge is not due to the effect of the 
force acting on it (the force cannot act in vain!), but because of 
the movement of the electron opposite to the field, it changes 
its position in the direction of the field. If we denote the 
number of broken connections (vacancies) p and their validity  
by μP, we get the corresponding current density for them: 
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                     (4) 

In the method of Brillouin zones, the mobility µP should not 
depend on p. Therefore, the motion of bound electrons in the 
direction opposite to the field can be replaced by the motion of 
an elementary positively charged quasi-particle moving in the 
direction of the field. This quasi-particle is conventionally called 
a hole. The conductivity arising due to holes is called hole 
conductivity. The parameter P denotes the concentration of 
holes, µP is the mobility of holes, and e = e⁺ is the charge of the 
hole. Free electrons and holes generated in the crystal lattice due 
to any external factor during the generation process are called 
intrinsic charge carriers, and the conductivity they produce is 
called intrinsic conductivity. 

 
 

Figure 3. In the field of electricity and electricity  
The Movement of the Vacancy 

 
Semiconductors whose conductivity is generated by proprietary 
carriers are called  semiconductors.In specific semiconductors, 
the concentrations of holes and electrons are the same: n = p, then 
the final current density 

      

(5) 
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Some can be expressed. If we take the validity as a scalar 
quantity and mark it by their ratio for electrons and holes, 

we get for the electrical conductivity of specific 

semiconductors:  

  

(6) 
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SECTION 9.  INTRINSIC CONDUCTIVITY IN 
SEMICONDUCTORS 

If we apply an intense external electric field to a 

semiconductor crystal  , then since the force of the field 

affects each free electron  , they gain a drift velocity in the 
opposite direction of the field, resulting in a current density. 

                                         (1) 
Some of them create a set of electrical currents. Here the 
concentration of the n-electron is the strength of μn-them. While 
the concentration of electrons in metals does not depend on 
external factors such as illumination, thermal energy, radiation, 
etc., since these factors play a key role in semiconductors, their 
electrical conductivity can vary over a wide range. In addition to 
this, there are other types of semiconductors that are also used in 
semiconductors. Indeed, as a result of the movement of the 
electron, the broken bond can change its position from one atom 
to another, and this movement occurs in a manner similar to the 

chaotic motion of an electron.  When applying an external 
electric field, the movement of electrons opposite the field (drift 
motion) prevails, and they are able to occupy empty 
communication positions in the direction of their movements. If 
all the connections are complete in ideal crystals, the movement 
of the connected electrons is impossible according to the Pauli 
principle.  The presence of broken communication points allows 
electrons to move opposite the field, thereby allowing a set of 
valence electrons to participate in conduction. In this case, the 
validity of the connected electrons should depend on the number 
of vacant positions. If we denote the number of bonded electrons 
with N, and their conductivity , then the corresponding 
current density is given to them: 
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                                    (2) 
They can. Thus, semiconductors involve two types of charge 
carriers - free electrons and bonded electrons. This is the reason 
why the final density of the  

                       (3) 
The movement of the related electrons in the opposite direction 
of the field gives rise to the movement of the broken 
communication points in the direction of the field, which is equal 
to the charge of the electrons and the movement of the e+-
positive charge in the field (Figure 2). In this case, it should be 
taken into account that the positive charge changes its position 

in the direction  of the field as a result of the opposite 
movement of the electron as a result of the force exerting it. 
If we denote the number of broken bonds (vacancies) p, and their 
validity by μP, we can write them for the corresponding current 
density: 

                      (4) 

Thus, the motion of the bound electrons in the opposite 
direction of the field can be replaced by the motion of an 
elementary positively charged quasi-particle moving in the 
direction of the field. 

 
Figure 2. The Movement of Electricity and Vacancy in the 

Field of Electricity 
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This quasi-particle  is called a hole. The amount of time that is 
generated by   the calculations is called the calculus. P-quantity 
is called the concentration of holes, μP is the density of holes, 
and e=e+ is the charge of the hole. Free electrons and holes 
formed in the crystal lattice due to any external factor  are 
proprietary carriers, and  the conductivity created by them is 
called proprietary conductivity. 

Semiconductors whose conductivity is generated by 
proprietary carriers are called proprietary semiconductors. 

In specific semiconductors, the concentrations of holes and 
electrons are the same: n = p, then the final current density 

         

(5) 
Some can be expressed. If we take the validity as a scalar 
quantity and denote their ratio for electrons and holes 

 , we get for the electrical conductivity of 

special semiconductors: 

  (6) 
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SECTION 10. EXTRINSIC CONDUCTIVITY IN 
SEMICONDUCTORS 

It is clear from the study of the conductivity of special 
semiconductors that the concentration of electrons and holes in 
special semiconductors is the same. However, in some cases, this 
condition is not met. This difference between the concentrations 
of electrons and holes is created by the introduction of 
extraneous element atoms into the semiconductors. In this case, 
the atoms of the outer element are called supernovae. The 
process of getting into the habit of getting into the habit is called 
a slippery slope. To understand the essence of this conductivity, 
let's look at the cases in which group IV element germanium is 
adjacent to the atoms of group V and group III elements. 

Suppose we have replaced one of the atoms in the 
germanium crystal lattice with a phosphorus atom of group V 
(Figure 1). As can be seen from the arrangement of phosphorus' 
electron layers (P15(1s2)(2s2)(2p6)(3s2)(3p3)), two of its five 
valent electrons are at the level of 3s and three are at the level of 
3p. Four of them are involved in covalent communications, and 
the fifth, since there is no empty space in the communications, 
belongs only to the phosphorus atom itself and remains in the 
orbit around it. This means that it takes energy to release this fifth 
valent electron of phosphorus. 

For this reason, the admixture atoms can be easily ionized, 
and as a result of the easy ionization of the five-valent 
phosphorus atoms included in the four-valent germanium cage, 
a very large number of free electrons are formed. 

These types of electrons  that can  be donated by 
themselves are called donor-type supplements. Phosphorus 
atoms that lose their electrons are converted into positively 
charged ions. However, these ions are not involved in 
conduction, and their role is mainly limited to supplying the 
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crystal with free electrons.  

 
Figure 1. Model of free electron formation in phosphorus-

doped germanium crystal. a – in the planar representation; b – 
in the energy band diagram 

Along with the ionization of the adsorptive atoms, the 
partial ionization of the basic material atoms also occurs, but 
since their concentration and therefore their share of conductivity 
are much smaller than that of the adsorptive atoms, the total 
number of free electrons is very, very large than the number of 
holes. Since the main charge is carried by electrons as the current 
passes through such a crystal, they are called the main charge 
carriers, and the holes are called non-primary charge carriers 
(Figure 2). Such a semiconductor  is called an electron or n-
type semiconductor. Since the electrical conductivity of an 
electron-type semiconductor is p<<n and σp<<σn,  

                      (1) 

Some can be expressed. 
Suppose that a germanium crystal contains three valents, 

such as a boron atom. Since boron has three valent electrons, it 
will remain unfilled with a germanium atom in a tetrahedric 
envelope (Figure 2). In order to complete this bond, a valence 
electron from a neighboring germanium atom must pass through 
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that empty bond point, and as a result, thatgerm-nium atom is 
converted into a positively charged ion. 

 

 
Figure 2. Model of free hole formation in boron-doped 

germanium crystal. a – in the planar representation; b – in the 
energy band diagram 

What we are trying to say is that we are still in the process 
of developing an electron   receptor that accepts electrons. The 
number of holes in such crystals, as we have noted, is much 
greater than the number of free electrons, and they play a key 
role in conductivity. As a result, these semiconductors have a 
perforated permeability. In P-type semiconductors, the main 
loads are holes, so n<<p and σn<<σp are conditioned and their 
conductivity is met. 

                         (2) 

Someone can express it. 
Thus, it is common for an electron (n-type) conductivity 

to be observed when the valence of the adsorptive atom is greater 
than the valence of the element atom, and when it is small, the 
permeability of the hole (p-type) is observed.  

Since the concentration of freight carriers in a suspended 
semiconductor is higher than that of a proprietary semiconductor, 
the special resistance of any type of superconducting substance 
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is less than that of pure one. In other words, when a 
semiconductor is exposed to a substance, its electrical 
resistance decreases.If both types of additives are present in the 
substance at the same time, mutual compensation occurs (Fig. 3). 
If the concentrations of the absorber and donor-type additives are 
equal, then complete compensation occurs and the substance 
behaves as a special semiconductor. Such substances are called 
compensated semiconductors and have a high resistance. 
Semiconductors that depend on the type of  pollution are called 
amphoteric semiconductors.       

When the concentration of the adgent atoms is large 
enough, the zone of admixture levels can expand and partially 
cover the cold basin or valence zone (Fig. 4). 

Figure 3                                                     Figure 4 

In addition, as the amount of additives in the 
semiconductors increases, the ionization energies of the 
superconducting centers decrease, and this ionization energy can 
reach zero when the corresponding levels overlap each other at 
sufficiently large values of the superconductor concentration. 
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SECTION 11. CONCENTRATION OF ELECTRONS 
AND HOLES. FERMI LEVEL 

In order to determine the concentration of free carriers in 
a certain zone, it is necessary to know the distribution function 
of energy, in addition to the number of quantum levels falling 
into a single energy interval in a single volume crystal (

this is the expression state function).  The 

 probability that the energy level will be captured by the 

electron  is determined by the function.  The 

distribution of particles in thermodynamic equilibrium of a 
system of particles consisting of the same type of particles, which 
is equal to single times of spini and follows the Pauli principle, 
is subject to the Fermi-Dirac statistics. In this case, the electron 
is in the crystal cage. 

                                (1) 

The ratio is compensated. 
If the case density and distribution function are known, we 

can calculate the concentration of loaders in any zone. If spin is 
also taken into account, then the concentration of electrons can 
be calculated by the following function 

                           (2) 

It is the energy that corresponds to the   lower and upper 
boundaries of the given zone. If we want to calculate the 
concentration of an electron in the conductivity zone, then we 

!"
!#"$ =!" !"# !"

!

!"# !" !
"

!

!"#$
%

%

+
= −

!"
#$

%
!$&

∫=
!

!

"!!#$!%&
!

"#"$#% &

!! !!



 56 

need to take the lower boundary of the integral from the bottom 
of the conductivity zone: , and the upper 

boundary  . To make it easier to calculate, 

 we can choose the starting lineup. If we  take 
into account the sharp dependence of the distribution function on 
energy, then we can take the upper limit  (for large 

energy prices ). Then we can use the expressions (1) and 
(2) to write (.2) as follows: 

                              (3) 

Let's make the following substitution: 

                              (4) 

And here  they are, and  they are nameless. The 
energy brought to is  called the Fermi level or the chemical 
potential brought in. And if we are to make a change in the name 
of the Prophet (peace and blessings of Allaah be upon him), then 
we will be able to do it. 

 

                                 (4) 

From this it can be seen that the concentration of electrons is a 
function of temperature and Fermi level:  

We can also use the function of distribution for holes. 
If any energy level is captured by an electron, then the 
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probability that the electron will be at that level is 1. In this case, 
the probability that the electron is not at this level, i.e., the 
probability that there will be a hole at this level, will be defined 
as follows: 

.    (5) 

Considering the above expressions, by analogy we obtain 
for the concentration of holes in the valence band 

       

(6) 
it is given as 
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SECTION 12.  THE DENSITY OF THE STATE. 
NUMBER OF QUANTUM STATES 

.  
The physical phenomena that occur in semiconductors are 

acutely dependent on the concentration of free carriers in the 
corresponding zones.  

In order to find the concentration of free electrons (or 
holes) in a crystal,  it is  necessary to know the 
number of quantum levels falling into the energy interval and the 
probability of an electron (or hole) being at these levels (i.e., the 
distribution function). In an electron approximation, the 
interaction of electrons with each other in the crystal is included 
in the self-binding potential. Electrons move independently of 
each other in such a potential field. In an electron approximation, 
the electrons in the crystal can be viewed as ideal gas molecules. 

Since this type of gas  is  made up of particles with spins, it 

will be subject to the Fermi-Dirac statistic in the state of 
thermodynamic equilibrium. The distribution of electrons or 
holes at quantum levels can be determined, the distribution 
function of the load carriers according to the conditions, the 
average cost of physical quantities, and the density of quantum 
levels. 

Suppose that a single-volume crystal  has a quantum 
level , taking into account the energy  and  the spin  
in the interval. 

The number of quantum levels in a single energy 
interval in a single volume of a crystal  is called state density. 
It includes: 

                            .                                  (1) 
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If the probability of any quantum level being captured by an 
electron in the temperature  interval observed at any 
temperature interval is  known, then  the number 
of electrons in the interval is: 

        .         (2) 
They can. To find the exact number of electrons in the region 
under consideration, it is necessary to integrate the expression 
(2) with the possible values of the energy: 

                          (3) 

This  is the minimum cost of energy and the  highest 
(maximum) of energy in the zone. Since the expression () is 
taken for a single-volume crystal, this expression gives the 
concentration of the electron. 

For the simplest case, let's determine the state density in 
the conductivity zone Suppose there is only one minimum of 
energy in the conductivity zone, and the energy around this 
minimum is defined as follows:  

 .                    (4) 

In this expression, the effective mass is a scalar quantity, while 
isoenergetic surfaces are spherical in shape.  

 and  

 
Let's take a look at the spherical layer that remains between the 
two isoenergetic surfaces that satisfy the condition (Figure 1). 
The size of this layer: 

.                                        (5) 

!
( )!"# !" !"

( ) ( ) ( )!""#$"%!&$"%!' !! "" ==

( ) ( )∫=
!

"

##$

!

!

"!!#$!%&

!! !!

∗∗
+=+=

!
"

!
" #

$%
#
&'%%

!"

!

!

!!

π

!"#$%&' =!" !

!"#$%&'E'E&E' =+=+ !"!" !!!

!""!# !"π=



 60 

To determine the  number of quantum levels in a volume 
here, it is necessary to divide it by the volume corresponding to 
a level in the Brillyuen zone (momentum space). You can see 

that this volume is equal to the volume. Let's show this for a 
simple cubic crystal cage. In this case, the Brillyuen zone is in 
the form of a cube, and its volume in the space of the wave vector 

 is: 

 

who is.  In this case, the volume of the Brillyuen 

zone in the momentum space is as follows: 

              (.6) 

They can. Here,  the volume of the elementary nucleus in a 

flat crystal cage is  the volume  of the crystal 
(since in a simple cubic crystal there is one atom per elemental 
nucleus, the volume of the crystal is equal to the volume of an 
elementary nucleus multiplied by the number of atoms in the 
crystal). 

 
 
 
 
 
 
 

Figure 1. 

!"

!!







 =±= !"#"$" !

"
#!

π

!"






=
!

"#
π

!"#$ π!
"

=

!
"#

"$
"#

$
#

$
#!B

!

!

!

!

!!

"
"

===





=

π
π

!!
! !"# !=



 61 

  
 And  the number 

of quantum states between energy intervals is  equal to the 
number of states in a spherical layer with thickness 

Since there is a level in each zone, as can be seen from the 

expression (6), it is for a crystal of uniform 

volume , i.e., each energy level in the Brillyuen zone 

corresponds to a volume equal to (excluding spin friction).  
When the crystal is formed, all other forms of friction 

disappear and only the spin friction remains. And if we take into 
account the spin, then we will see the number of levels in the 
volume of the sphere layer (5): 

.                          (7) 

They can.  And   if we use the relation (4) to express 
through, we get: 

                           (8) 
and  

.                 (9) 

After a certain mathematical operation, the following expression 
is obtained for the density of the state: 

.           (10) 
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This expression refers to only one energy minimum in 
the Brillyuen zone and the case density in the conductivity zone 
for the case where isoenergetic surfaces are spherical. 

In the same way, we can calculate the case density for the 
valence zone. The expression of energy near the maximum. 

                                   (11) 

If this is the case, then we are going to take a look at the density: 

.                    (12) 

To get an expression similar to the formula (12) for the 
case density for holes, it is necessary to take the effective mass 
of the holes as follows: 

.                              (14) 

For example, for silicon , and for 

germanium . 
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SECTION 13. SCHRÖDINGER'S EQUATION FOR 
CRYSTAL 

 
In classical mechanics, the motion of objects is the 

mathematical expression of Newton's second law.  

 

It is described by the equation. By means of this equation, when 
the force acting on an object is known, the coordinate, velocity, 
and trajectory of the object are determined. This equation is 
called the basic equation of classical mechanics. 

In quantum mechanics, the motion of a microparticle 
cannot be described by Newton's equation. Because. 
Microparticles have a dual nature. They behave like particles and 
waves. In quantum mechanics, an equation must be found that 
describes the motion of microparticles. This equation must take 
into account the wave nature of the particle. 

In quantum mechanics, the moment a particle is given  its 
state in space is Ydetermined by a function (x,y,z). YThe 
function (x,y,z) has no physical meaning. However, the square 
of this function  is the probability that there is a  particle at the 
coordinate point x, y, and z of space at the given moment t. 

A solid body is made up of a huge number of atoms and 
electrons. To determine the energy spectrum and stationary states 
of a system of such particles, it is necessary to solve 
Schrödinger's equation: 

                                           (1) 

where the  Hamiltonian value of the crystal Y is its specific 
function, E is its specific value, or the energy of the crystal. The 
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wave function of a crystal depends on the coordinates of all the 
particles that make up it: 

             (2) 

Here  are the coordinates of the electrons  , 

 or  the nuclei of the atoms. 
The Hamilton operator combines the following types of 

energy: 

1) Kinetic Energy of Electrons : 

                          (3) 

 

Here is the Laplace operator for the C electron: 

                         (4) 

2) Kinetic Energy of Nuclei  : 
 

 
3) The Dual Interaction Energy of Electrons 

                    (5) 

Here are the masses of the nuclei. 

                          (6) 

Dual interaction energies of electrons : 
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                 (7) 

 
 

4) The Dual Interaction Energy of the Nuclei  

            (8) 

Here   and  are the charges of the nuclei.  

5) The Interaction Energy of Electrons with Nuclei 
 

                (9) 

6) The energies of all particles in the outer field : 

                   (10) 
 

In this case, the Hamiltons of the crystal can be written on 
the outside field as follows: 

                (11) 

Schrödinger's equation (11) includes a number of variables 
3(Z+1)N, where N is the number of atoms in the crystal. (11) By 
solving the equation (11), it is possible to determine all the 
information about the crystal: the possible values of energy, the 
configuration of the nucleus, and the spatial distribution of 
electrons. Since a crystal  has about 1023 atoms in a volume of 1 
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cm3, its equation (11) has a very large number of variables, and 
therefore its exact solution is practically impossible. Therefore, 
the main problem of solid state theory is to solve the Schrödinger 
equation for the crystal by applying approximate solution 
methods and obtain the necessary information. One of these 
methods is the possible approximation for an electron moving in 
the periodic field of the crystal lattice. This approach leads to the 
energetic diagram of the crystal zone. 

To solve Schrödinger's equation, it is necessary to bring a 
system of interacting particles into a system of non-interacting 
particles. In this case, the Schrödinger equation for the system of 
particles is divided into a system of equations, each describing a 
particle separately. Indeed, the total Hamiltonian of the system 
can be expressed as the sum of the Hamiltonians: 

 ,                                      (12) 

It  depends only on the coordinates of the k-particle. 

                        (13) 

The wave function of a system can be expressed as the 
product of the wave functions of individual particles, and the 
energy can be expressed as the sum of their energy: 

            (14) 
and  

,                                   (15) 

In this case, K and YK  are intertwined. 

                  (16)
  

And they are the ones who 
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The transition from equation of the system of interacting 
particles (11) to a system of equations describing non-interacting 
particles is possible within the framework of certain approximate 
approximations. 

Let's assume that there are no external fields: 

                  (17) 
Before moving on to the simplification of the Sredinger 

equation, the expression of the energy of a crystal 
 

        (18) 

 
Let's write it down. In this case, the integration is carried out at 
the coordinates of all the particles. 

      (19) 
 

 The wave function allows us to 
determine the motion of any particle in a crystal. With its help, it 
is possible to theoretically determine the crystalline structure of 
matter and its possible modifications from the minimum energy 
condition of the state of the system. 
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SECTION 14. ADIABATIC APPROXIMATION. 
BORN-OPPENHEIMER APPROXIMATION 

 
One of the methods for simplifying the Schrödinger 

equation is the adiabatic approximation or the Born-
Oppenheimer approximation. The essence of this lies in the 
significant difference between the motions of electrons and 
nuclei, such that since electrons move at much greater speeds 
relative to the nuclei, it can be assumed that at any given moment 
the nucleus is at rest relative to the electron. The physical 
meaning of this method is that the motions of electrons and 
nuclei can be characterized independently of each other. Then 
the crystal can be considered as a structure composed of two 
subsystems: fast-moving electrons and practically stationary 
nuclei. Thus, the problem concerning the system of nuclei and 
electrons can be reduced to a simpler problem characterizing the 
state of electrons moving in a lattice formed by these nuclei. 

  Since the kinetic energies of the nuclei are 
equal to zero, and the potential energy of the interaction of the 
nuclei is constant Face, it is possible to equate the coordinate 
beginning to zero by selecting the coordinate beginning in the 

appropriate order. In the meantime,  , and  in 
the meantime, Tony Blair  

                            (1) 
Someone can write.  Let's take a look at the wave function of 

electrons  . In this case,  the condition of 
uniform normalization in the integration of electrons at any value 
of the coordinates of nuclei must be paid: 

                     (2) 
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Under these conditions, Schrödinger's equation can be 
written as follows: 

                                  (3) 

In this expression ,  this equation is entered not as a variable, 
but as a parameter that affects the wave function and the value of 
the crystal's energy: 

              (4) 

E is the energy of electrons moving in the field of nuclei that are 
at rest. 

The idea of a nuclear reactor is extremely superficial. In 
fact, it is important to note that the cores are moving. In this case, 
the Hamiltonian of the crystal can be described as follows: 

      (5) 

(5) Let us call the operator included in the expression (5) the 
nuclear part of the Hamiltonian crystal. Then we can write: 

                              (6) 

Let's describe the wave function of a crystal Y as a derivative: 
 (7) 

This expression can be substituted for the Schrödinger equation 

for crystals, and  the equation can be defined as: 
(8) 
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  (9) 
You can write.  
Someone can write it. After a certain mathematical equation   

   (10) 

In the light of the fact that it is 
From the above statements, it is evident that the wave 

function of the crystal in the adiabatic approximation 

  (11) 

Some can be written.   

 

It can be found in the equations. 
In adiabatic approximation, the wave function of electrons 

is determined by the instantaneous state of the nuclei ( the 
Weez limit in Weez), while the wave function of the nuclei is 
determined by the mediated area of the electrons. 
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SECTION 15. A SINGLE-IMPURITY 
SEMICONDUCTOR 

 
Now let's take a look at a semiconductor that is a kind of 

addictive center, let's say donor-type addicts:  
In this case, the neutrality equation is: 

.                              (1) 
 
In general, this 
is the third order 
according to the 
equation. Now the 
free holes in the 
valence zone are 
only due to the 
ionization of 
specific atoms, and 
the free electrons 
in the conductivity 
zone are due to the 
ionization of 
electrons from 
both the valence 
zone and the donor 
zone.  
It is located in the middle of the area (Figure 1). Therefore, 

 in the conditionally paid temperature interval ("low" 
temperatures), the main role will be played by the overflow 

centers, and  in the conditionally paid interval 
("high" temperatures), the main role will be played by the 
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Figure 1. Thermal generation of 
charge carriers in a semiconductor 

with donor-type impurity 
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transitions from the valent zone to the conductivity zone. Let's 
take a look at both of them separately. 

a) Low temperatures. As we have already  mentioned, 

this  includes the temperature interval that satisfies 

the condition. In this case, we can see that (3.6.1)   is not 
the same as (3.6.1). (3.3.19) and (3.4.5) (3.6.1): 

 

Or 

.                (2) 

If we make a change like this: 

,                                               (3) 
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To put it simply: 
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If we take into account that this is the  case  , we can omit 
the negative sign in front of the root expression. Then we get 
from (3.6.3) and (3.6.5) for the Fermi level: 

                   (6) 

The following inequality can be calculated  due to the change 
in temperature at sufficiently low temperatures: 

.                                 (7) 

In (3.6.6) we can subtract the units: 

.     

(8) 
Since it is calculated from the bottom of the energy conduction 
zone ,  the energy corresponding to the level of the 
adversity (the "depth of the adversity") is negative: 

. 

     And if we are to be honest with ourselves, 
then we are to be honest with ourselves. 

                        (9) 

From this it can be seen that   it happens 

when, i.e., at absolute zero, the Fermi level passes through the 
middle of the distance between the conductivity zone and the 
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adjacent level. Increasing with the increase in temperature  , 
it approaches the bottom of the permeability zone, takes the 
maximum price, and then begins to decrease,  

recurring  in its price  (but here (3.6.7) conditional 

must be paid, otherwise the expression (3.6.9) is not correct). 
Let's find the concentration of electrons: 

 

                           (9a) 

 
From 
here, it 
seems 
that 
again,   

  

  A 

straight line is 
given in the 
form of a 
straight line 
(Figure 2). 
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Figure 2. In a semiconductor with one 
type of impurity at low temperatures 
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The Activation 
of Energy  
This line  can be found by  the angle of inclination: 

.                             (10) 
3.6.7 And we shall see that the LORD hath made a covenant with 
the LORD of hosts, and he hath made a covenant with the LORD 
of hosts. 

         .                            (11) 

In order for the same concentration of additives (  11) 
to be correct, relatively higher temperatures are required, and 
conditional temperatures must also be met at these temperatures 

 . In this case, if we divide the expression (3.6.6) 

into the order above, then we will suffice the 

first two terms: 

                               (12) 

  This means that as the temperature 

increases , it  drops below the bottom of the conductivity zone. 
To do this, let's find the concentration of electrons: 

                       (13) 

That is, the concentration does not change depending on the 
temperature (all donor centers are ionized). This is called an 
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oblast where the electrons of the donor centers are completely 

depleted. Here it is  ... 
(b) High temperatures. If we continue to increase the 

temperature,  the concentration of the carriers will increase 

due to the specific conductivity, being  constant . 
We can write the equation of neutrality like this: 

.                                    (14) 

 Considering that it is: 

, 

.                          (15) 
From here: 

.                      (16) 

We have removed the negative solution here because it does not 
have a physical meaning. Concentration of holes: 

.                 (17) 
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     (18) 

                                   (19) 

And when we do that, we're going to have to look at it from the 
perspective of the donor centers. 

                             (19, a) 

And when that happens, we get a non-translucent semiconductor 
that has a special conductivity. 

Thus, when there is only one type of surcharge center in 
the semiconductor, the value of the Fermi level is determined by 
the expression (3.6.6) or (3.6.18). Figure 3  shows the 
temperature dependence of the three values of the concentration 
of donor centers: 

. 

We can easily get the appropriate expressions in the same 
manner for the acne type of acne. In this case, for the lower 
temperatures: 

             (20) 
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           (.21) 

Figure 4 shows the temperature dependence of the Fermi level in 
the semiconductor for three different concentrations of absorbor-
type admixture centers: 

. 

 
 
 

 
 
 
 
 
 
 
 
 
                   Figure 3.                           Figure 4.   
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SECTION 16. THE EFFECTIVE MASS OF THE 

ELECTRON 
 

Suppose that (or ) is an extreme  point in 
dependence  

   (1) 

In addition to the point, there must also be other extreme 

points in the dependence, e.g., symmetrical -  point. And not 

only  that, but also because of the power of the Internet, it is 
also the source of all things. 

  (2) 

Therefore, it can be affirmed that the number of extreme points 
must be determined by the elements of symmetry of the crystal 
field. For example, a cubic lattice with 24 elements of symmetry 
should have a total of 24 equivalent extremes. 

Let's take a look at some of the most important 
aspects of Taylor's case: 

     (3) 

Since the vector argument consists of the sum of 
three quantities (with corresponding differentiation to the sum of 
three quantities (kz, ky, kz), this expression  is called a tensor. 

If = 0, we get a scalar, and  if = 1, we get a tensor- 
vectorfrom  the first rank; =2.3,... If this is the case, then the 
second, third, and so on will be used. Let's just write the first two 
paragraphs: =1, =2: 
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 (4) 

 

 (5) 
 

Mixed derivatives do not depend on the sequence of 
differentials: 

    (6) 

Such tensors are called symmetric tensors, and 

 some boundaries are called diagonal elements. A 

derivative of the component  consists of three elements - a 
ranked tensor. 
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Let's take a look around the little one. In this case, the 
first steps may suffice.  As a result of the extremity of the series, 

the  series begins with the quadratic limits. 

 (7) 

From this it can be seen that the isoenergetic surface in the 
vicinity of the extremum is described with sufficient accuracy by 
a second-order surface. When the price of energy is close to the 
extreme value of E0, this condition is more accurately calculated. 
This is due to the fact that the first few steps are very small 
compared to the first one: 

   (8) 

By selecting the coordinate axes, it is possible to bring the 
second-order tensor into a diagonal shape, so that the non-
diagonal elements are converted to zeros on these axes. In the 
context of these circumstances 

          (9) 

In this case, the equations of isoenergetic surfaces 

  (10) 
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(11) 

Drop it into your image. 
Since the sequencing is carried out with respect to the 

extreme point, the signs in all derivatives are the same-: plus  at 
minimum and minus at maximum, so isoenergetic surfaces  are 
ellipsoid-shaped. 

Let's look at isoenergetic surfaces in quasi-impulse space. 
It’s obvious that 

  (12) 

And since it's an extreme  point, it's just a 
matter of getting close to it. 

  (13) 

"We can write it down. 

     (14) 

Let's accept it. It is clear that K is  the sum of its parts. 
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who is. – The unit of measurement coincides with the unit 

of measurement of the inverse value of the mass: 

 

 The quantity is called the inversely 

effective mass tensor.  
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SECTİON 17. THE ELECTRON NEUTRALITY 
EQUATION. 

 
If the Fermi level ( ) is known, then it is easy to drill a 

hole and calculate the concentration of the electron. However, 
the Fermi level is highly dependent on the degree of clearance 
and temperature of the semiconductor. When there is an external 
coating in the semiconductor, local levels of sulfur are generated 
in the prohibited area. These levels can be held by both electrons 
and holes. The redistribution of loaders by energy levels is 
regulated by the change in the level of the Fermi. 

Typically, to determine the state of the Fermi level, they 
use the condition that the crystal is neutral in terms of its electric 
charge, and the equation that expresses this condition. To get this 
equation, we need to take the sum of the negative charges in the 
crystal equal to the sum of the positive charges. Suppose there 
are both donor and acceptor-type additives in the semiconductor, 
and their concentrations  are respectively  and  . In the 
state of equilibrium, as a result of thermal ionization, a certain 
amount of electrons pass through both the suspension centers and 
the principal atoms (the valence zone) to the conductivity zone. 
Let's write the condition for the neutrality of the electric charge 
for a single-volume crystal. To do this, we need to calculate the 
number of negative and positive charges separately (Figure 1).  
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Figure 1.  Heat generation of freight carriers in 
semiconductors with donor and acceptor-type alloys 

 
Negative charges are electrons in the conduction zone and 

the receptor centers that have captured the electron (  let's 

indicate the concentration of such  centers). The sum of 
them is: 

. 
Positive charges are free holes in the valence zone and donor 

centers that have lost their electrons (  let's indicate the 
concentration of such centers). The sum of the positive loads: 

, 

here  and  accordingly  shows the charge of the electron 

and the hole . Now let's write the neutrality 
condition of the electric charge: 

                         (1) 
or    

.                        (2) 
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This is called the equation of neutrality of the electric 
charge of a crystal or the equation of electroneurity. 
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SECTION 18. TEMPERATURE DEPENDENCE OF 
FERMI LEVEL IN SPECIAL SEMICONDUCTORS 

 
If there are no external superconducting atoms in the 

semiconductor, it is called a special semiconductor. In this case  
, it is. The equation (3.60) takes a very simple 

picture: 
,                                         (1) 

In other words, the number of free electrons in the conductivity 
zone is equal to the number of free holes in the valence zone 
(Figure 1).               

For a non-semiconductor, we take the expression (1): 
                  

.    (2) 

From here: 

. 

From this formula  we can find: 

           .                       (3) 

If  it does, then the Fermi level passes through 

the middle of the forbidden zone and does not depend on 
temperature (Figure 2).  At absolute zero 

temperatures, the Fermi level falls into the middle of the 
forbidden zone, and as the temperature increases, it approaches 
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either the conductivity  zone or the valence zone 

 linearly. 

 
 
 
 
 
 

 
 
 
 

 
 
Figure 1.Temperature dependence of the Fermi heat generation 

level of loaders in a proprietary semiconductor 
If we refer to the concentration of loaders for a particular 

semiconductor  , we get the expression (3.3.34): 

         (4) 
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And then there's the fact that this phrase is a logic: 

.                         (5) 

 
 
As you can 

  

see, it depends on 
the line (Figure 
2). (3.5.5) and 
Figure 2 shows 
that 

. 
 
 
Thus, the dependence of the concentration of loaders on 
temperatures in a special semiconductor makes it possible to 
determine the width of the prohibited zone. 
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SECTION 19. UNDERSTANDING OF  
QUASI-PARTICLES 

 
When we looked at the motion of the electron in the 

crystal, we took the permissible values of energy in the form of 
zones as a result of the periodicity of the crystal potential, i.e., 
the result of the regular arrangement of atoms over long 
distances. This is commonly referred to as long-distance 
regularity. However, in semiconductors, the zoned character of 
energy is also observed in cases where the order is disturbed over 
long distances, for example, when the semiconductor melts and 
turns into a liquid (in the case of a liquid there is regularity only 
over small distances), the zoned character of the energy is often 
preserved. This shows that "remote order" is not a necessary 
condition for the receipt of energy in the form of zones, but in 
fact it is only one of the sufficient conditions that allows us to 
solve an electronic problem. It seems that a sufficient conditional 
constitutes the structure of the potential (close order) at close 
distances, but such an approximation requires solving a multi-
object problem. We have already talked about the complexity of 
the problem. 

It is clear from simple physical judgments that when free 
atoms combine to form crystals, the same (flaked) states of the 
electrons of different atoms must form zones as a result of the 
disintegration (elimination of friction). 

It is possible to talk about the role of the proximity zone 
in terms of the proximity of the order. This is because the atoms 
are statistically distributed in the crystal, and there can be no talk 
of their orderly arrangement (periodicity) over long distances. 

Describing the physical properties of a solid object is 
made sharply easier by incorporating the concept of some quasi-
particles. Such particles cannot exist freely outside of the 
environment (in a vacuum). In fact, the electron and the hole that 
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create electrical conductivity in the crystal and have a certain 
effective mass and quasi-momentum are such quasi-particles. 

Apart from charged quasi-particles (i.e., particles involved 
in the transport of electric charge), there may also be other types 
of quasi-particles in a solid body – non-charged. To explain the 
possibility of the formation of such particles, let's take a look at 
the mechanism of formation of an electron-hole pair in a special 
semiconductor. The electron absorbs energy equal to the width 
of the forbidden zone and passes into the conduction zone, thus 
creating a free electron in the conduction zone and a free hole in 
the valence zone, which are also involved in the electrical 
conduction of the crystal. If the energy absorbed is smaller than 
the width of the forbidden zone, then a special state called 
excitation may occur in the crystal (excitation in English). The 
existence of an exciton state was first proposed by Frankel 
(1931). An exciton is such a bonded state of an electron and a 
hole in which the coulomb interacts with each other that it has a 
certain quasi-momentum and forward motion energy, and can 
move along the entire crystal. It is possible to imagine the 
formation of an exiton in a different way. When a free electron 
and a free hole are formed in a particular semiconductor, a 
coulomb interaction (gravitation) force occurs between them. As 
a result, an "atom" will be formed - an exciton, similar to a 
hydrogen atom, but here it is not a positively charged particle 
proton, but a positively charged hole with a mass equal to the 
mass of an electron. 

The movement of the electron-hole pair in the exciton 
state does not cause the formation of an electric current and does 
not affect the electrical conductivity of the crystal. Therefore, the 
absorption of light, which results in the formation of an exciton, 
does not cause photoconductivity. The resulting exciton 
undergoes a chaotic diffusion motion within the crystal, and this 
state continues until one of two conditions occurs:  
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1) one of the particles that form the exciton is captured by one of 
the crystal disorders. At this time, the other particle is still free in 
the corresponding area; (2) It recombines with the electron. In 
this case, the energy absorbed during the formation of an exciton 
is either released in the form of a quantum of light or converted 
into the thermal energy of the crystal cage. Of course, in both 
cases, the exciton is broken. 

In general, the solution to the problem of electron 
formation goes beyond the approach of an electron. However, 
given the interaction between an electron in the conductivity 
zone and a hole in the valence zone, it is possible to include 
excitation excitation in the band theory (note that such an exciton 
is called a Mott or Vanier exciton). If the size of such an exciton 
is large enough than the crystal constant, then we can view the 
interaction of the electron-hole pair with great accuracy as a 
coulomb interaction of two charged particles in the dielectric 
medium (where the main crystal cage plays the role of the 
dielectric medium). In this case, it is necessary to take the optical 
(high-frequency) dielectric constant as the dielectric constant of 
the medium. Because the electron and the hole move so "inertly" 
that the operator that characterizes their coulomb interaction 
does not need to include the polarization associated with the 
displacement of the crystal ions. 

If we refer to the radius-vectors  that  characterize 

the state of the electron and the hole in the exciton, and their 

effective masses  , and with them  , we can write the 

Schrödinger equation, which describes the state of the exciton, 
as follows: 

.  (2.19.1) 
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Here, the first and second limits on the left side of the equation 
describe the kinetic energy of the electron and the hole ( and 

 the Laplace operator taken according to the coordinates of 

the  electron and the hole, respectively), and the third limit 
describes the interaction energy of the electron-hole pair. 

This system is the radius vector of the center of inertia of 
the electron-hole pair: 

                             (2.19.2) 

And it  can be described by the radius-vector, which 
determines the position of the electron in relation to the hole: 

.                                (2.19.3) 

We can show that when we express the newly entered variables 
(2.19.1), the equation looks like this: 

,       (2.19.4) 

Here  is the mass of the electron-hole pair: 

                              (2.19.5) 

(2.19.4) The equation is solved by separating the variables: 
.                           (2.19.6) 

2.19.6 (2.19.4) and divide it into two parts  : 

. (2.19.7) 
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The first limit of the left side depends on only , and the second 
limit depends only on , but the sum of them  is  equal to a 
fixed quantity. In this case, each limit must be equal to a constant 
quantity separately ( and  not dependent on each other): 

,                               (2.19.8) 

.               (2.19.9) 

It’s obvious that: 
.                           (2.19.10) 

The equation (2.19.8) is reminiscent of Schrödinger's equation 
for a free electron and  describes the free 

movement (translation) of a mass particle (exciton) across the 
entire crystal. The solution to this equation is in the form of a 
plane wave, energy: 

                        (2.19.11) 

It is expressed by the formula. Here, the wave vector of the 
exciton is defined as follows: 

.               (2.19.12) 

Thus, the equation (2.19.8) describes the motion of the 
center of inertia of the exciton. The kinetic energy that performs 
this motion is . Another equation – (2.19.9) describes the 
internal (hydrogen-like) motion of the exciton relative to the 
center of inertia. In this case, the specific values of energy are 
determined as in the case of a hydrogen atom. In the case of a 
hydrogen atom, however, the energy of an electron that has 
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moved away from its atom to an infinite distance is first taken as 
a starting point. In an exciton, it is necessary to choose the 
beginning  in such a way that  and  when it is 

 obtained  ( - the prime quantum number,  and 
 the  values of the energy corresponding to the maximum of 

the valence zone and the minimum of the conductivity zone). In 
this case, let's take a look at the Exciton: 

.   (2.19.13) 

If we calculate the maximum of the valence zone of energy 
, then we get the main state of the exciton   : 

.                 (2.19.14) 

From the expressions (2.19.13) and (2.19.14), it is evident that 
the energy levels of the exciton are located in the vicinity of the 
conduction zone in the forbidden zone. 

The value of the radii of the boron orbits of the exciton is 
determined by the following formula: 

.              (2.19.15) 

The lower the effective mass of the loaders and the higher 
the value of the dielectric constant  , the less energy of the 
exciton and the greater the radius of the boron orbit. In practice, 
it is more difficult to observe excites with large radiations. This 
is because the energy levels of such excites are very close to the 
conductivity zone (almost fused with it). An exciton with a large 
radius (relative to the parameter of the crystal cage) is called a 
Mott exciton. 

The total energy of the exciton: 

∞=! ∞=ρ

!"
#$ %%% += ! !"

!"

!"# $$

!"
#
$

%
%&$'EE

)
!%

#
$EEE )

*

#+
)
#*

,-)
#*

)

.
#+

),-
!/
# ⋅








−+=⋅−+=
εε!

!"# =!" !"# =!

!"#$%&
'

(

)
'

% !"
#
#

$$ %&

%
'

!E









−∆=

ε

!"# $$

!" !
"
"#A%&

"'
#( #&

#)

&*
#&

#)
*

**
'+
# εε 










==

!" #!ε



 96 

                        (2.19.16) 

Each energy level must be converted into a zone with a 
sufficiently wide width. However, in experiments, when light is 
absorbed by an exciton, its energy levels are observed in the 
form of lines with very narrow energy levels. This, in turn, is 
related to the selection of the wave vector of the exciton. 

Another type of exciton is an exciton with a small radius 
or a strong bond. These are commonly referred to as Frankel's 
excitement. Such excites can be described by the convergence of 
a strongly bonded electron. In this case, the expression for the 
specific values of the energy of the exciton is the same as the 
expression for a strongly bonded electron. Thus, the energy 
spectrum of the exciton is made up of separate zones. 

A further excited state in crystals dominating the ion bond 
can be described by means of a quasi-particle. In such crystals, 
the conductive electron (and the ionized adsorption atom) 
polarizes its immediate surroundings through its electric field, 
and the greater the dielectric constant of this polarizing medium, 
the stronger it is. As a result of polarization, the energy of the 
electron decreases, i.e., a potential hole is formed around the 
electron. Thus, a state arises that is self-connected and can move 
along the entire crystal. Self-bonding consists in the fact that the 
localized electron polarizes the crystal, while the polarization of 
the crystal, in turn, helps to maintain the localized state of the 
electron. When the electron moves, it also "follows" the 
polarization of the crystal. Thus, the electron polarizes the 
regions that have just come across on its path, and the previously 
polarized regions return to their previous state as the electron 
moves away from it. Such free charges, which move in the 
environment in which they are polarized, were first studied by 
S.I. Pekar (in 1946). He called it the polyaron, which is formed 
in the crystal. Therefore, when we say polyaron, it is necessary 

!"!"
#$ %&% +=
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to understand the electron and the region that it polarizes in the 
crystal around its vicinity. 

It should be noted that the formation of polarion is not 
caused by the complete polarization of the crystal, but only by 
the inertia part of the crystal, which is associated with the 
displacement of heavy ions  . The other part of the 
electron that is associated with the polarization of the electron 
layers (orbit) (  which has a relaxation period) moves 
inertially along with the free electron, and thus enters the self-
bound periodic potential, which is directly affected by the crystal 
on the electron. 

The polaron state forms an entire zone in the crystal, and 
the polaron moves in this zone. The movement of the polar in 
this zone is the same as the laws that the electron follows during 
its movement in the conductive zone. However, there is only one 
condition that must be met, so that the polarization of the 
medium does not lag behind the displacement of the electron (not 
too inert). 

If the energy of interaction with the hole that the electron 
itself has "drilled" is greater than the thermal energy, then the 
communication on the polaron is strong enough, and it is more 
energetically favorable to be in the state of polaron, which is 
located in the forbidden zone below it, than to be in the zone of 
conduction to the electron. If we refer to the number of electrons 
in the conductivity zone  and the number of electrons in the 

polaron state , then the polaron is  the energy of the 
polaron. 

 

.                                 (2.19.17) 
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It should be noted that the polaron zone is located below 
the conductivity zone and its width is smaller than the width of 
the conduction zone; as well as the effective mass of the electron 
(polarion) carrying the "fur" with it in the corresponding zone 
may be quite large compared to the electron of the conduction 
zone. Accordingly, the temperature dependence of the polaron 
on is completely different from that of an electron in nature. And 
the Prophet (peace and blessings of Allaah be upon him) said: "O 
Messenger of Allah, I am the Messenger of Allah, To illustrate 
this, let's imagine a polaron (polyaron packet) localized near any 
node point in the crystal cage. This type of situation that does not 
have translational symmetry cannot be sustainable. It will either 
travel through a tunnel through the entire crystal like an electron 
in the conduction zone (but with a greater effective mass) (the 
wave packet will "propagate" across the entire crystal), or it will 
fall into the hole created by the heat dances of the crystal cage in 
its neighborhood without expending any energy. With a certain 
effective "sedentary" duration , the probability of the transition 

of the described first state  does not depend on the 

temperature at the first approach. The  probability of the 

second case, which is characterized by duration,  will depend 
exponentially on the temperature, since the probability of the 
formation of an "empty" hole increases  exponentially 
depending on the temperature: 

 
 

                                (2.19.18) 
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Here  is the energy of the formation of the empty pit. The 
outcome of the poll will depend on which of these two cases 
prevails. It is less likely that an "empty" hole will form due to 
heat energy at sufficiently low temperatures. That's why 

 .  . . Thus,  after a randomly localized polar 

period, it  will again become a zone electron, and the heat 
dances inhibit the movement of the zone electron. In this case, 
with an increase in temperature, the validity of the polar vortex 
decreases. At high temperatures, on the contrary, empty holes 
are more likely to form. Therefore,  and . As 
the intensity of the heat dances increases, empty holes will form 
very often, and the polaron will "jump" from one of them to the 
other. Since it is already  available  , the displacement 
of polar (either as a result of diffusion or by the influence of the 
field) will be mainly due to the second mechanism. This is called 
the jump (or jumping) mechanism. In this case, the validity of 
polyarone will increase exponentially with the increase in 
temperature: 

.                               (2.19.19) 
In its own way, this expression is similar to the 

dependence of the flow of ionism on temperature. This is why 
the mechanism that we have described above is called the leap 
mechanism. It should also be noted that the exponential 
dependence of polarity on temperature is related to the 
probability of the formation of a sufficiently deep hole in the 
neighborhood, which itself is not the depth of the hole, but 
the energy of its formation. 
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Localized polyarone can remain "stuck" near any defect 
(defect) of the crystal cage. This is exactly the same as an 
electron caught by a defect. 

Another type of quasi-particle is uncharged particles, 
which describe waves that correspond to the propagation of the 
heat dances of the crystal cage. As a result of the propagation of 
the heat dances of atoms, there are a large number of stationary 
waves in the crystal, which differ from each other in 
wavelengths. Just as in the corpuscular theory of light it is 
possible to replace every wavelength of light with a particle of a 
certain energy with a particle of a certain energy, so in the theory 
of solids, it is possible to replace each static wave of heat dances 
with a certain wavelength with a particle of corresponding 
energy. This particle is called a phonograph. Thus, the static 
waves created by the heat dances in the crystal cage are replaced 
by phonon gas. This makes it easier to describe a number of 
properties of a crystal cage. 
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SECTION 20. THE FUNCTION OF DISTRIBUTING 
THE DISTANCE AND DURATION OF THE FREE 

ESCAPE 

The average length of the jt freeway and the duration of 
the free run varies from zero to infinity over a wide range for 
different loaders. Therefore, it is necessary to determine the 
probability of finding a free escape.  For this purpose, let's 
assume that, 

1) The probability of an electron  being subjected to a 
collision at a given DT time interval is  directly proportional to 
the DT interval; 

2) The probability of a collision in a single time is a 
constant quantity with respect to time; 
In order to determine the distribution function of this 
purpose\free escape path, let's express the probability of a 
particle moving without being subjected to collision in the time 
interval t, t + dt  as follows: 

  (1.3.1) 
where  vthe quantity (t) is (t, t+1), vand (t+dt) t+dt, t+dt+1 is 
the probability of free motion of the dread in the time interval 
t+dt+1. v The value (t+dt) can be expressed as follows: On the 
one hand, 

   (1.3.2) 

On the other hand,  the free tact of motion during the period t+dt  
can be expressed as the product of two motions according to 
probability theory. For example, event C can be expressed as the 
product of two events;  And the   Prophet (peace and blessings 
of Allaah be upon him) said: "O Messenger of Allah, I am the 
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Messenger of Allah (peace and blessings of Allah be upon him) 
and I am the Messenger of Allah (peace and blessings of Allah 
be upon him). 

 C=AB               (1.3.3) 
The probability of the product of two events is equal to the 
probability of the conditional probability of the other event: 

 (1.3.4) 

Since event A does not depend on event B, (A/B) = (We 
can write A. Event B does not depend on event A, so it can be 
written: 

   (1.3.5) 
We can also express the probability of free movement during the 
period under consideration by the probability of scattering during 
that period. Since the probability of scattering (collision) in a unit 
time is 1, and the probability of free movement is 1,  we  
can write: 

              (1.3.6) 
Let's take a look at the comparison of the above statements: 

           (1.3.7) 
This is for the function (t). 

    (1.3.8) 

This leads to the differential equation.  
Let's take a look at the average price of a free spin <t> as 
follows: 
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 (1.3.13) 
If we substitute the average running time  with <t>= , then 
we get according to (1.2.13) that the probability of a collision 
in a unit time is equal to the inverse value of the average free 
running time: 

    (1.3.14) 

In this case, the distribution function normalized to unity 
is 

   (1.3.15) 

In a similar way , we  can find the distribution function

 of the  free escape route: 

   (1.3.16) 

The assigned distribution functions are calculated for the 
most common cases. Apply them to the motion of an electron in 

an electric field. Moving rapidly in the electron field , during 

the  T-free run.  

   (1.3.17) 

It gains velocity, and it  travels the distance x  in time. 
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   (1.3.18) 

In this case, the average velocity of the drift is 

       (1.3.19) 

In contrast to the middle field, the 

      (1.3.20) 

They can. Here's a breakdown of the speed and speed of the 
drive: 

   (1.3.21) 

    (1.3.22) 

From all of this, it can be concluded that the  average running 
time is or the time between two collisions. It is determined not 
by the speed of the drift motion, but by the length of the free-
running path and the full velocity of the particle. The full velocity 
depends on the energy of the particle, and for this  reason, the 
free running time is a function of the energy of the particle. 
If the free escape route itself is also dependent on energy, this 
dependence becomes even more complicated.  
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SECTION 21.  INVERTED CRYSTAL CAGE 

The arrangement of atoms within the crystal lattice has a 
certain periodicity. In other words, a crystal is a vector in its 
entirety  .  

                      (1)  
And if we continue to do so, it will continue to fall on its own. 
Here,  the numerical value is equal to the 
corresponding languages of the elementary crystal core, and the 
vectors oriented in their positive direction  are 

integers (positive and negative).  Vectors are 
called translational or base vectors.    

Within the crystal, such as electrostatic potential, electron 
cloud density, etc., have three-dimensional periodicity. Since the 
points within the crystal  and  characterized by its 
vectors are equivalent, the following condition is met for the 
electrostatic potential: 

                     (2)  

To simplify the calculation, let's  use the vectors 
and select three new vectors like this:  

; ;      (3) 

Here the expression in the denominator of all three vectors is the 
mixed product of the base vectors. It is known that this product 

 is equal to the  volume of the parallelpiped (i.e., the 

elementary core) built on these vectors.  Let's take a look at 
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it:  
                                           (4) 

(3) It can be seen from the expression (3) that  the 
degree of dimension of the vectors is equal to the inverse of the 
dimension of length. For example, if we are going to use the 
Cubic Synagogue  ,  we 

 will take it.  If we could get the SMS  , 

it would be fine. 

If we  build parallelpipes on their vectors 
and arrange these parallelpipes side by side in all three directions, 
we will still get a three-dimensional lattice, just like in a crystal 
lattice. This type of three-dimensional grid  is called an inverted 

crystal lattice.  They  are base (or translation) vectors 

in an inverse crystal lattice. In a parallelpipe 
built on vectors, we will call it the elementary core of an inverted 
crystal lattice. A vector that connects any two node points of an 
inverted crystal lattice is called an inverse crystal lattice vector. 
In general, we can express this vector as follows:  

                            (5) 

Here  are the  exact numbers. 

Here are  the vectors of the straight crystal  cage.      

The volume of the elemental core of an inverted crystal 
lattice is equal to the inverse value of the volume of the elemental 
core of a flat crystal lattice:   
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                                 (6) 

In crystallography, the idea of an inverse crystal lattice 
arose from the problem of dividing any function with the 
periodicity of a flat crystal lattice into the Fourier order. 
Such an approach facilitates the study of the motion of an 
electron in a solid body (in a periodic field) on the basis of 
quantum mechanics.   

The inverse crystal lattice vector has the following two 
important properties.  

    Theorem 1. 
If g1 : g2 : g3 = h : k : 
l, then  the 

 

inverse lattice vector 
is perpendicular to 
the plane of the flat 
lattice (HKL) (Figure 
1).  

 
 
 

Theorem 2. The length of the inverse lattice 
vector is equal to the inverse value of the distance between 
two adjacent planes in a family of parallel planes 
corresponding (HKL) in a straight lattice.  
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SECTION 22. PERIODIC FIELD OF THE 
CRYSTAL LATTICE. BLOX WAVE 

 
The Schrödinger equation for a single electron is 

expressed as follows: 

 
 (1) 

Here,  the area of the 
electron in the crystal lattice and the rest of the energy interacting 
with the electrons depend on the properties of the lattice. One of 
the most important features of the crystal cage is its periodicity. 
In this  way, as far as the translation vector goes, a point that 
is identical to the initial point is obtained: 

 it is the base of the 
cage. Of course, there is a need for a periodic table of energy. 

   (2) 
It has to be in shape. 

In the case of an operator, this condition is  

  (3) 

It can be written here, but here it is called the translation 

operator. 2) It is evident from the equation that  and  its 
points are physical equivalent. So, if we write in Schrödinger's 
equation  instead  ,  the wave  function 
corresponding to his argument differs from the wave 
function Cn by the constant multiplication: 

 

In other words, the  modulus of the wave function 
remains unchanged due to the periodicity of the potential field 
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 in the shift as much as the translation vector  , but only 

its phase changes. 

  The normalization condition for the wave 
function is as follows: 

 (4) 

In accordance with the terms of normalization:  

,  (5) 

It will be taken from him  . This means that Cn is 

equal to either a unit or an imaginary exponent. CNN is 
considered to be an -imaginary exponent. Taking into account 
that the top of the exponent is an unnamed number and - in is 
a unit of length, it is assumed that one-third is an additional 
multiplication with a unit of measurement m-1. This quantity is 
called a wave vector and  is denoted by it. The modulus of this 
quantity is called the wave number, and its physical meaning is 

 the waves that are located in 2 parts: 

                 (6) 

So, 

                          (7) 
The effect of the periodic field of the crystal lattice on the wave 
function of the free electron mathematically appears as an 
additional multiplication in front of this function: 

   (8) 
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This condition is called the translation property of the wave 
function of the electron in the crystal  . This is in the form of an 
operator. 

   (9) 

who is written. In this case ,  the function of the broadcast 

operator is  its own value. As we know from quantum 

mechanics, the Hamiltonian  and the translation operator 

command  each other, which means that they have a 
common system of wave functions. It follows from this that 
during the movement of the electron in the crystal, the wave 
function of Hamiltonian satisfies the translation condition, and 

the wave function  depends on the wave vector: 

. Hamiltonian's specific values will depend on  the 
energy and wave vector of the system. This statement  is called 
the law of dispersion  of the energy of the electron in the crystal. 

 And the  search for their dependencies is the 

main problem of the zone theory of solid-state physics. 
Let's take a look at the solution of Schrödinger's equation 

for the motion of an electron in the periodic field of the crystal. 
For this purpose, let's multiply both sides of equation (8): 

  

 

 If we accept this expression, it would 

look like the following: 
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And so it  has the same periodicity as the 

potential field: 
   (10) 

Then the wave function , which is the solution of 

Schradinger's equation for the motion of an electron in a crystal  
   (11) 

It can be in shape. 
Thus, using the condition of the periodicity of the potential 

field of the crystal, we determined the shape of the wave function 
of the electron, without solving the Schrödinger equation. (11) It 
is derived from the statement that the solution of Schrödinger's 
equation for an ideal crystal is a plane wave modulated by 

amplitude  with the periodicity of the crystal lattice (11). 
This solution  is called the Blox wave or the Blox function. From 
the expression of the blox wave, it appears that it does not depend 

on n.  We think of a plane wave as a function of a variable 
amplitude wave modulated in a crystal lattice tact  . Since 

it is different for different wave vectors  ,  the 

markup is accepted. 
When we compare the Bloch wave with the de Broyle 

wave  , it has a more visual physical meaning. 

If the electron changes its position from free space to crystal, 
then, of course, the wave function of the electron will be 
modulated by the constant period of the crystal lattice according 
to the expression (10) under the influence of the periodic field of 
the crystal. 
. 
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SECTION 23. THE RELATIONSHIP BETWEEN 

VELOCITY AND QUASI-IMPULSE 

The acceleration operator  is determined by Poisson's 
quantum brackets: 

                   (1) 

This is the coordinate operator, and the Hamilton operator 

is the Hamilton operator.  and  to calculate their operators, 

it is more convenient to move to E or -descriptions, so that all 

operators  are expressed in the form of certain operations on 

functions that depend on the operators. The Hamilton 

operator,  or in the descriptions of E, is either the 

multiplication operator, or simply the energy E( ). 

                                     (2) 

In order to define the operator ( )  here, we can use the 

condition  that the  function ( ) is  closely related to

 the function of the operator, which is a special function: 

                                  (3) 

Here is the value of the coordinate operator,  and its 
specific function is given in the description. 
 It is known from quantum mechanics that the special 
functions of two operators in a mutual description are in a simple 

relationship: The function of the operator in the M Diagram 
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: 

                          (4) 

This   is the function of the operator in the 
description of L. 

                          (5) 
And if they do, then they will have 

                                    (6) 

They can. In this  case,  the function of the operator is 
the function of the operator. 

                      (7) 
It can be written that from now on, we can easily find the picture 

of the operator  based on the equations corresponding to 
special functions and special values: 

                                (8) 
Or 

                            (9) 

The implication of these relationships is that  it is 

necessary to choose the form of the operator in such  a 

way that the product of that function  is obtained as a result of 

its influence on its function. This  has to be done in 

terms of the function of time. 

Let's take a look at the function of the operator 
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 : 

(10) 

Or 

   (11) 

So, 

                           (12) 

The operator is given in the form of a sum consisting of the 

product of any function that is differentiated by the number of 

waves (or quasi-impulse) and  (or  depends on). -

 Instead of a limit , the  function  can  

be divided by its functions and  any operator can be included.
When =sonst, the second limit is converted to zero, and 

 the operator becomes the usual coordinate operator in 
the -description, so that in this case the quasi-impulse and the 
momentum are identical. Now the expression of the velocity 

operator  in the -description  

           (13) 

It can  be written in the form of a multiplication operator for 
the derivative of energy by quasi-impulse: 

.               (14) 

This relationship is similar to the expression of the 
wavepacket for the group velocity: 
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                  (15) 

The average velocity of an electron in an energetic 

state (but  not  with a wave function) has a 
completely definite value, and it depends on this case.  

            (16) 

Some of them are (< > here). 
Thus, in a very small energy interval,  the average value 

of the velocity of an electron in certain energetic states is 
determined as the derivative of the energy relative to the quasi-
impulse. In the case of the extreme, the average velocity in the 
quantum mechanical sense is equal to zero (after that, we will 
discard the words "average velocity in the quantum mechanical 
sense"). 

If we look at the proximity of the extreme points, the 
energy in this interval is a quadratic function of the quasi-
impulse: 

  (17) 

Speed 

,                           (18) 

Or in the form of a vector. 

                       (2.7.19) 

In other words, in general, the velocity is equal to the scalar 
product of the quasi-impulse to the inversely effective mass 
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tensor. If the tensor m*-1 is diagonal in shape,  

                            (20) 

In this case, the expression (18) is simple: 

                              (21) 

Since velocity is an energy gradient in quasi-impulse space, it  is 

directed according to the normal of the surface at all 
points with a radius-vector on isoenergetic surfaces. 

Since the radius-vector and the normal surface are not 
collinear on ellipsoidal isoenergetic surfaces, the directions of 
velocity and quasiimpulse do not coincide. The collinearity 
condition for such surfaces will be paid only along the axes of 
the ellipsoids (Fig. 1), in this case 

                       (22) 

São 

                                (23) 

We get it. 
Thus, at the same value of energy, the velocity along 

the axes of the ellipsoid is inversely proportional to the 
square root of the corresponding component of the effective 
mass. Ellipsoids  

                            (24) 

To get the speed of the arrows 

                          (25) 

We get their expressions. It is evident that the more the ellipsoids 
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are stretched, the smaller the velocity in that direction. If we 
build a family of isoenergetic energy levels, this becomes more 
noticeable (Fig. 2). The smaller the effective mass, the more 
dense the isoenergetic surfaces are located in this direction, and 
accordingly, the velocity along that axis is greater. 

Fügure 1 Directions of the normal radius-vector and 
isoenergetic surface: 

a- spherical isoenergetic surface; b- ellipsoidal isoenergetic 
surface;  

c- Spherical isoenergetic surface, m*<0. 
 

It is important to note an important moment in connection 
with the sign of effective mass. For simplicity's sake, let's assume 
that the effective mass is a scalar quantity. In this case  , and 

 the vectors are colliniary, but their direction depends 

on the shape of the extreme. For the minimum, m*>0 and  its 

velocity  coincide with the direction. For the maximum 

energy, m*<0 is in  this case, in which case  the copy vector  

is  directed opposite to the quasi-impulse vector (Fig. 
1c).  
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Sugar. 2. The relationship between fast effective mass and the 

density of isoenergetic surfaces 
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SECTION 24. ZONAL STRUCTURE OF SOME 
SEMICONDUCTORS 

 
Calculating the quantitative structure of any substance is 

associated with certain difficulties. The problem with this 
approach is that there is no definitive analysis of the potential of 
the crystal cage. Therefore, all such calculations usually involve 
physical parameters that can only be computed empirically in the 
basic formulas. Such parameters include, for example, the width 
of the prohibited zone, the value of the effective mass, etc. 

For a crystal, an electron problem can be solved by quasi-
free and quasi-closed electron convergences with two types of 
approximation. Another method is the orthogonalized plane 
wave method, which consists of a convenient combination of 
these. Here, during the movement of the electron in the crystal, 
the wave function is distinguished as a combination of plane 
waves, from which the wave functions of the inner electrons for 
the atom are derived. The wave functions of the internal electrons 
themselves are selected as a combination of the Blox function, 
which is in the approximation of a strongly bonded electron. 
Thus, the wave function of the electron in the crystal behaves as 
a plane wave in the interatomic space, and at the node points 
(around the atoms) as an atomic wave function. In this case, 
however, there are some challenges to solve. For example, when 
this method is applied to silicon and germanium crystals, it is 
necessary to solve an equation with a formula of 146 to obtain 
the expression of energy at the arbitrary point of the Brillyuen 
zone. In this case, the problem is solved by the application of 
group theory, and although it is simplified enough for points with 
load-symmetry, the equation of 16 machullui is still obtained, 
which can only be solved by numerical calculations. 

Let's take a look at some of the more common types of 
semiconductor substances. 
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(a) Silicon and germanium crystals. As can be seen from 
the structure of the electron layers (2), the last, partially charged 
layer in these substances  is the layer, where two electrons are 
located with spins parallel to each other, i.e., the main state is a 
triplet. The zone structure of silicon and germanium has been 
calculated by German and others for a number of points in the 
Brillyuen zone that have high symmetry by the orthogonalized 
plane wave method. For other points, the prices of energy 

 are obtained by interpolation. 
The theoretical calculations were compared with the 

results obtained in practice, checked, and a number of 
adjustments were made to them. Both substances  are 
involved in the formation of conductivity and valence zones. 
Therefore,  it is necessary to use wave functions that 
correspond to the Blox function of the spin convergence (which 
has triple friction if spin is not taken into account) when 
compiling the Blox function. 

As a result of the interaction, friction disappears, and each 
of the two zones (valence and conductivity zones) consists of 
three bands. In the meantime, the two sides are partly divided 
into two zones. 

Figures 1a and 1b show the dependence of energy on the 
wave vector in the directions [111] and [100] for silicon and 
germanium. This attitude varies in different directions. In the 
conductivity zone (for both substances), one of the branches of 
energy is located much lower than the other two. The state of the 
lowest minimum (absolute minimum) of this branch determines 
the bottom of the permeability zone. 

In silicon, it is in the absolute minimum direction [100] 
(within the Brillyuen zone). There are 6 such minimum (since 
there are 6 equivalent directions). 
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Figure 1.  Structure of the energy zones  of silicon and 
germanium  

In germanium it is in the direction of the absolute 
minimum [111] (at the end of the Brillyuen zone), so the number 
of equivalent minimums is 8. The isoenergetic surfaces near the 
absolute minimums are in the form of a rotational ellipsoid. The 
axis of rotation itself was the great axis of rotation, coinciding 

with the direction for silicon[100] and for germanium [111].  
This is how the energy dependence around these minimums is as 
follows: 

                (1) 

It  is  called " transverse" and 

 "longitudinal" effective mass, and their numerical 
values are determined in experiment by means of cyclotron 
resonance. For silicon  (

which is the mass of a free electron):  
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 The ratio determines the anisotropic properties of 

isoenergetic surfaces. The Ratio of Arrows: 

. 

Its minimum points are located within the Brillyuen zone, near 
its border. The shape of the isoenergetic surfaces near the 
minimum points for the conductivity zone of silicon is shown in 
Figure 2. 

For Germanium: 
 

. 

 
 
 
 
 
 
 
                                                                        
                        Figure 2                                Figure 3             
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Cross-section of silicon and germanium with  the plane of 
isoenergetic surfaces (001) in the isoenergetic conductive zone 
in the valence zone  of silicon and germanium  

The shape of isoenergetic surfaces near the minimums in 
the conductivity zone for Germanium is shown in Figure 3. Half 
of each ellipsoid remains in the first Brillyuen zone, as its 
minimum points fall within the boundary of the Brillyuen zone. 
In other words, there are 4 complete ellipsoids, i.e., there are 4 
complete ellipsoids in the conductivity zone, not 8. 

The maximum of the valence zone of silicon and 
germanium is located at the central point of the Brillyuen zone 

for all three branches of energy  . Here the two zones 
overlap with each other, i.e., there is a double rotation, if the spin 
rotation is not taken into account, and the third band is separated 
from the other two band as a result of the interaction of the spin 
of the electron and the magnetic field corresponding to its orbital 
motion (spin-orbital interaction). The cost of fission as a result 
of the spin-orbital interaction is 0.035 eV for silicon and 0.28 eV 
for germanium. 

The dependence of energy on the wave vector is more 

complex than the expression of the approximate 
circumference (1) of its maximum point for the first two 
branches, and is determined by the following formula: 

           (2) 

Here  - the mass of the free electron - is an 
immeasurable constant. For silicon 

, for 
germanium: 
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In this case, isoenergetic surfaces are not 
ellipsoids, but deformed ("shrunk") spheres (see Figure 3). 
Therefore,  although it is unisex dependent on energy 

(2), the nature of this dependence is such that it does not allow 

the use of the effective mass tensor. If  we use a spherical 
coordinate system that coincides with the polar axis in space, 

then we can write the expression (2.18.2) as follows:   
.    (3) 

Let's take a look at the average price of all the variables in the 
variables: 

              

(4) 
It includes: 

                (5) 

And We have brought them to the surface of the earth. In this 
case, we will take the following scalar quantity for the effective 
mass of the holes: 

                                   (6) 

In other words, each energy branch has its own characteristic 
scalar effective mass: 
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;          (7) 

 
As shown in the (7) formula . Therefore, holes in 

the zone that correspond to a large effective mass are called 
heavy holes, and holes in a zone that corresponds to a small 
effective mass are called light holes. For example, if we 
substitute the values of the corresponding parameters for silicon 
into (7): 

, 

, 

. 

Values derived from the experience: 

. 

Here are the results of the experiment for Germanium: 

. 

For the third branch of the valence zone, the dependence of 
energy  on is quadratic: 

,                         (8) 

where the value of -spin-orbital fission is 0.035 eV for 
silicon and 0.28 eV for germanium. (8) It can be seen that the 
effective mass for the third arm is the scalar quantity: 
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, for silicon , for germanium 

. Obviously, the isoenergetic surfaces for this 

branch are spherical in shape. 
(b) Intermetallic compounds.  Substances formed from 

the combination of group III and V elements ( type 
compounds) (called intermetallic compounds) have 
semiconductor properties.  These are the types of units that 
belong to this class:  and so on. 

The theoretical calculation of the zonal structure of 
intermetallic compounds is carried out in a comparative manner 
with the zonal structure of the elements of the fourth group. This 

is due to the fact that  the type of compounds  
crystallizes  in the crystal structure of the  zinc sulfide

.The crystal  structure differs from that  of diamonds in that 
only  atoms and  types alternate with each other  . The 
result is that the periodic area of the crystal cage of intermetallic 
compounds does not have an inversion center, i.e. 

. To solve the problem, the potential of the 
corresponding group IV element, whose zone structure is known, 
is used when compiling the periodic potential of the crystal 

lattice of the intermetallic compound.  The potential of 
the combination is taken as the sum of any excitatory 
antisymmetric potential with the potential of the corresponding 
group IV element. It is determined how the known structure of 
the element of group IV will change under the influence of this 

excitatory field (potential). This  is the potential for a 
combination of the following: 

, 
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Here

, 

i.e.,  the  symmetric and antisymmetric 
portion of the potential, respectively, for the "combination", 

 and  the  symmetric and antisymmetric part of 
excitement, respectively.  In order to solve the problem, the 

 zonal structure of the diamond (the diamond modification 
"C" of carbon),   the structure of -un,  -

for, and   for -is taken as a basis. A few  
of the types of combinations are shown in Figure 4. Here, the 
structure of the conductivity zone does not differ qualitatively 
from the zone structure of silicon and germanium. The valence 
zone also consists of three branches (zones), and the third zone 
itself  is separated from the other two zones as a result of 
spin orbital interaction. The difference between the valence zone 
of intermetallic compounds is that the first two zones, which 
correspond to light and heavy holes  , and  the  
antisymmetrical part of the potential area, are located in the 

center of the Brillyuen zone . It is broken down. 
Therefore, the maximum energy of the light and heavy holes 
slips relative to each other and falls slightly beyond the center of 
the Brillyuen zone. It could be that one of them is at the 

maximum, or one of them  . However, as a rule, the 

slippage is so small that   the  prices of energy at 
its point and maximum point differ from each other by as much 
as one hundredth or a thousandth of 1eV. The structure   
of the valence zone of the combination is given in some detail in 
the form of 4 b  . As it turns out, the maximum of the 
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valence zone and the absolute minimum of the conductive zone 
fall at the same time as the center of the Brillyuen zone  
. 

It is parabolically dependent on energy near the 

minimum , and the effective mass of the electron located at the 
bottom of the zone itself is very small (the value 
taken from the cyclotron resonance measurements). 

 
 
 

                                         
 
 
 

 
 
 

 
 

 
 
 

a)                                                  b) 
Figure 4. Zone structure and valence band structure of 

AIIIBV   and Structure of the Valentine Zone   
 
For relatively large energy prices, the conductivity zone is no 
longer in the form of a parabola, and its curvature is reduced. 
Therefore, the effective mass of an electron depends on the 
degree of filling of this zone. This, in turn, depends on the 
temperature and concentration of additives. 
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  Taking into account the interaction of the 
conductivity and valence zones in the combination (since the 
width of the forbidden zone is small), Kane showed that the 
expression of energy for different zones should be calculated 
from the following cubic equation: 

   (9) 

Here - the energy of the carrier - spin-orbital 

disintegration - is constant, taking into account the interaction 
of the conductivity and valence zone. 

If the effective mass is too small  , 

the excess may not be taken into account. From (9): 

             (10) 

This dependence is called a expression derived from the 
three-zone Kane model. 

  Taking into account that the combination is 
large, and after making a series of simplifications, we can 
express the dependence of energy on the wave vector for the 
conduction zone from (2.18.9) as follows: 

                           (11) 
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Here  is the parameter that describes the 

conductivity zone moving out of the parabolic zone. 
The above examples illustrate the main characteristics of 

the zone structure of semiconductors. Therefore, we are not 
going to show the structure of other items here. 
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LABORATORY STUDY No 2 
 

INVESTIGATION OF TEMPERATURE DEPENDENCE 
OF SEMICONDUCTOR SAMPLE CONDUCTIVITY 

 
Materials: rectangular semiconductor sample, heater, 

milliammeter, millibolt meter, constant current source, ruler, 
micrometer, connecting wires. 

Purpose: The purpose of the work is to calculate the 
conductivity of the sample, study its temperature dependence, 
and establish a temperature dependence graph of the 
conductivity  .  

A Brief Introduction to Theory 
 

Among the substances that exist in nature, in addition to 
metals, there are substances which, like metals, have electron 
conductivity, and in them, unlike metals, the concentration of 
freight carriers increases sharply with the increase in 
temperature. Such substances have a very large resistance at low 
temperatures and are practically insulators, but with an increase 
in temperature, their special resistance decreases sharply and at 
sufficiently high temperatures it acquires a small value. These 
types of substances are called semiconductors. Semiconductors 
belong to a class of substances whose conductivity is strongly 
dependent on external conditions, especially temperature. At the 
small value of the forbidden zone, the semiconductor state 
corresponds and at absolute zero tempe-rature it is converted into 
dielectricity. In the conductive zone, electrons and in the valence 
zone, the holes move under the influence of an electric field and 
create a current. As the temperature increases, the number of 

!"!"=σ
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electrons and holes passing through increases rapidly, and the 
resistance of the semiconductor decreases with speed. 

The main feature of semiconductors is that they do not 
have free loads, electric carriers are formed as a result of external 
influence. Examples of such external influences  include 
temperature, radiation, strong electric field, and so on. Since 
there are two types of negative and positive loads in 
semiconductors, semiconductors  have electron and perforated 
conductivity  .A  semiconductor whose hole is equal to the 
number of electrons belongs to a class of semiconductors. In N-
type semiconductors, the main loads are electrons, and in P-type 
semiconductors, the main loads are holes.   

The conductivity of semiconductors is explained based on 
the theory of quantum mechanics. This theory is called zone 
theory. It is known from the zonal theory that in any isolated 
atom, electrons can only receive discrete energy values, called 
energy levels. According to Pauli's principle, no two electrons 
characterized by the same quantum numbers can be located at 
each energy level. In other words, there can be only one electron 
at each energy level with 4 quantum numbers identical. If there 
is a second electron, then its spin quantum number must be 
directed in the opposite direction. An electron that is located at a 
higher energy level in an atom is called an electron valence 
electron. When atoms in solid bodies come close to the 
interatomic distance, the interaction between their electron 
clouds causes the energy levels of the individual atoms to break 
down to form the energy zones of the solid body. Each energy 
zone creates discrete levels whose number is equal to the number 
of atoms in a crystal, but located very close to each other. Figure 
1 shows the electronic structure of the germanium-specific 
semiconductor and the formation of an electron-hole transition 
as a result of external influence. Germanium is 4 valents. When 
one of the bonds is broken as a result of an external influence, a 
free electron is formed in the crystal and a hole is formed in its 
place. Under the influence of the external field, the electrons are 
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the opposite of the field. The holes move in the direction of the 
field, creating an electric current. 

İ=İe+İd 

 

 
 
Figure 1. Electron Conductivity and Conductivity of 

Germanium Crystal 
 
The conductivity of chemically pure semiconductors  is 

called specific conductivity, and the semiconductors 
themselves  are called special semiconductors.Examples of  
such semiconductors  are Ge, Si, S, Ga, As, and PbS, InSe, GaS 
from chemical  compounds  . The conductivity of semiconductors 
is acutely dependent on the external atoms that are fired at them, 
i.e. the superconductors. For example, when only 0.001% boron 
is added to silicon,  its conductivity at room temperature 
increases by about 1,000 times. 

The energy zone generated by the energy levels of the 
valent electrons is called the valence zone, and at a certain 
temperature, this level is completely filled. The zone above the 
valence zone is called the conductive zone, and all its energy 
levels are empty. The difference in energy between the bottom 
of the conductive zone and the ceiling of the valence zone  is 
called the width of the restricted zone. The bottom of the 
conductive zone is the minimum, and the ceiling of the valence 
zone is the maximum energy levels. In the main case, the valence 
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zone in the semiconductor is completely filled, and there are no 
freight carriers that can participate in the electrical conductivity 
in the crystal. In this case, all the electrons are in a covalent bond. 
Under such conditions, the semiconductor material is no 
different from dielectric. As the temperature increases, the 
electron gains energy that can break that connection. In this case, 
a free electron is formed in the crystal cage that does not come 
into contact with any atom, and where the connection is broken, 
an empty hole is formed. According to the zone theory, as a 
result of the movement of the electron, the electron passes 
through the forbidden zone and passes into the conductive zone, 
and in the valence zone a hole is formed in its place. (Figure 2).  
Above the full valence zone is a completely empty zone. Under 
certain external influence, electrons pass from the I valent zone 
to the second zone. On the other hand, the zone I that has lost 
some of the electrons will also be the zone that is no longer filled. 
As a result of the formation of such zones, matter acts as a 
conductor 

 

 
Figure 2. The mechanism of formation of conductivity in 

the semiconductor is the I-valent zone, the II conductive zone, 
the width of the forbidden zone 

   
The permeability of the semiconductors  is acutely 

dependent on the additives  that are shot at them. For example, 
when only 0.001% boron is added to silicon,  its permeability at 
room temperature increases by 1,000 times. In semiconductors, 
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the permeability created by the solvent is called 
superconductivity, and such semiconductors are called 
superconductivity. To determine the effect of additives on the 
conductivity of the semiconductor, let's investigate the effect  of  
5 valent As and 3 valent In  on the Ge crystal.It's kind of like a 
slap in the face to the S-Curve. In such a lattice, each atom has a 
valent bond with four neighboring atoms. Suppose  that a portion 
of the Ge atoms is replaced by  5-valent As atoms, and the As 
atom expends 4 electrons  to form a valent bond with 4 adjacent 
neighboring atoms  (Figure 3a).  The 5th electron of the ace atom 
is not involved in the valence bond and remains empty. This is 
how this process is explained according to zone theory.  

According to zone theory,  between the valence zone of Ge 
and the conductive zone, the donor energy level of the valence 
electrons  of As  is generated D. This level  is located at a distance 
of Ed = 0.015 eV from the lower level of the conductive zone  and  
is called the donor level. When the electrons at the donor level are  
energized by Ed = 0.015 eV, they pass into the conductive zone. 
Since the excitation energy  of the Ed  electrons at the donor-level 
is approximately two components less than the excitation energy of 
the electrons specific to Ge  De, approximately  two components, 
when this semiconductor is heated, the acid atoms will be excited 
first, and as a result, their concentration will be greater than the 
concentration of the specific electrons. Therefore, the conductivity 
of Ge will be mainly due to the superconductivity  of electrons.The 
enzymes that create electron conductivity are called donors. 
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Figure 3. 

 
Now suppose that  some of the Ge atoms  in the space cage  

of Ge are replaced by  3-valent In-atoms (Figure 3). The In atom 
lacks 1 electron to form a valent bond with the four neighboring 
atoms in the same cage  . An electron  can be obtained from an 
atom of Ge. Calculations show that Ed  
D = 0.015 eV of energy is required for this. This is not the first time 
that the S-Class has been in the same position as the S-Class, but  
it is moving freely  in the S-Class. 
 

 
Figure 4. 

 
       The electrical resistance of semiconductors 

decreases sharply with the increase in temperature. The 
resistance of semiconductors at certain temperature intervals 
decreases by an exponential law with the increase in temperature.  
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                                                 (1)  

The resistance is at  a temperature of  00 C,  the width 
of the prohibited  zone. This is a  special case for the 
Conservative Party 

                                                  (2) 
It is in the picture. The quantitative  characteristic of a given 
semiconductor  is called the  activation energy and also the 
width of the prohibited zone. 

Using the relationship between conductivity and 
resistance, we get: 

 ,  ,  and                (3) 

If we look at it this way, we are going to take a look at the 
following: 

                                         () 

Here  is the current strength flowing through the 
semiconductor sample,  the voltage drops in the sample, d- 
sample of the length and  the area of the cross-section.  
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COURSE OF STUDY   
 

1. Determine the linear dimensions of the sample with a 
caliper (or millimeter ruler).  

2. And then he goes on to say, "Wow, this is a great way to get 
the most out of it, and to get the most out of it." 

                                       
 
 

 
 

 
 
 

 
Figure 5. Principle circuit diagram for studying semiconductor 

conductivity 
 
3. It is necessary to turn on the heater and measure the 

temperature. The temperature of the heater should be 
changed by 100 degrees Celsius each time 

4. The temperature should vary from room temperature to 
1000- degrees Celsius 

5.  At each temperature, it is necessary to measure the current 
passing through the sample and the voltage drop in the 
sample. 

6. At each temperature,  the value of the 

permeability must be calculated.  To achieve this, the 
temperature of the conductor  must be 
determined on a millimeter sheet of paper 
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LABORATORY STUDY No. 3 
 

The Study of the Hall Effect 
 

Purpose: The purpose of study investigates the Hall effect in 
semiconductor crystals, to measure the Hall stress, to determine 
the Hall constant, to determine the marking and concentration of 
the loaders in the sample. 
Materials: rectangular semiconductor sample with electrical 
contacts, constant current source, ammeter, microvoltmeter, 
magnet with gqc. 

 
A Brief Introduction to Theory 

 
The electrical conductivity of metals depends on the 

concentration of electrons and their conductivity. Both of these 
quantities are the most basic quantities of metals, and it is of great 
importance to determine them correctly. A phenomenon called 
the Hall effect is used to determine the concentration of metals 
in an experiment. The Hall effect can be explained with the help 
of the following experiment. Suppose that in the form of a 
rectangular parallelopiped, a current with a current with a 
current intensity J passes through the sample (Figure 1). 

 

 
Figure 1. An example of a semiconductor to determine the Hall 

effect  
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Obviously, within the example, equipotential surfaces are 
surfaces that are perpendicular to the direction of current. On the 
faces of the specimen, probes are placed symmetrically on 
equipotential surfaces. In the absence of a magnetic field, the 
potential difference between the probes is zero.  Let's create a 
magnetic field of a genus with an induction B in the direction 
perpendicular to the flow direction of the current  . As a result 
of the magnetic field, there is a potential difference between the 
probes on the surfaces of the sample. This difference in potential 
is called the Hall's potential. The phenomenon of a potential 
difference in the faces of a current sample as a result of the 
influence of a magnetic field is called the Hall effect. To 
visualize the Hall effect, the sample is placed in a strong mantle 
field. 

It has been established from experiment that the difference 
in latitude potentials  is proportional to the current 
intensity J, the magnetic induction B, and the width of the sample 
A. 

                                    (1) 

This is called the R-Holl constant. The Hall constant depends on 
the type of sample. 

The Hall phenomenon can be explained by the fact that the 
Lawrence force exists. Each electron is affected by the Lawrence 
force in a direction perpendicular to the magnetic field. This is 
the force 

                                         (2) 
Electrons are exposed to the opposite of the magnetic field.  

 
And then there is the power of the force, and then there is a 
balance between these forces. Then you can write: 

,  and ;  ;   

And if we look at it from  the other side,  we  get: 
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                                   (3) 

where  S = a  is the area of the finest part of the 
example. And then we get it:   

;          (4) 

 From here;              

                                            (5) 

is taken. In other words, the Hall coefficient depends on the 
concentration of the loaders and the price of the electric load: 

                                        (6) 

In the words of Hall of Fame,  

                                           (7) 

It is possible to calculate the concentration of loads from the 
expression. 

Figure 2 shows a ready-made Hall device, and Figure 3  
shows an experimental device for the Hall effect  

 
Figure 2: Magnetic field calibration scheme 
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Figure 3. Measuring the dependence of the Hall voltage on the 

magnetic field 
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COURSE OF STUDY 
 

1. The size of the semiconductor sample should be measured 
with a caliper. 

2. In the example, the current passing through the sample 
should be measured in ammeters. 

3. The voltage generated by the hall between the probes must 
be measured in millivolts. 

4. The value of the magnetic induction must be taken from the 
table. 

5. It has to be calculated based on the results obtained. 
 

Measurement example 
a) Calibration of the magnetic field 
Table 1: Magnetic field B  as a function of the current I 

flowing through the reels. 

 
 

The data from Table 1 are shown in Figure 4. 
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Figure 4:  Calibration curve as a function of the current I of the 

magnetic field. 
 
(b) To measure the dependence of the Hall voltage on 

the magnetic field 
Table 2: As a function of the magnetic field B  of the  UH 

Hall voltage (absolute value)  for constant latitude I currents. 
 

 
 
The UH Hall voltage signal has been determined to be 

negative.  
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Əlaqə 
(b) To measure the dependence of the Hall voltage on 

the magnetic field 
For the latitude currents I = 15 A and I = 20 A, the data 

shown in Table 2 are graphically given in Figure 5. 
 

 
 

Figure 5:  Dependence of UH Hall voltage  on magnetic field B: 
I = 15 A (circles) and I = 20 A (squares). Whole 

lines correspond to equation (1). 
 
  

 


